DataWhale_Pandas_pandas基础

0 序

这一章节对pandas的基本属性和相关函数做了了解,包括Seires,DataFrame的用法等。话不多说,直接来学把~


导入三方模块

import pandas as pd
import numpy as np

1 文件的读取和写入

1.1 文件读取¶

1.1.1 csv文件读取

df_csv = pd.read_csv('./data/my_csv.csv')
df_csv.head()

在这里插入图片描述

1.1.2 txt文件读取

df_txt = pd.read_table('./data/my_table.txt')
df_txt.head()

在这里插入图片描述

1.1.3 excel文件读取

df_excel = pd.read_excel('./data/my_excel.xlsx', engine='openpyxl')
df_excel.head()

在这里插入图片描述

上面三个函数有一些常用的公共参数:
    header=None - 第一行不作为列名
    index_col - 把某一列或几列作为索引
    usecols - 读取列的集合,默认读取所有的列
    parse_dates - 需要转化为时间的列
    nrows - 表示读取的数据行数

1.1.4 示范说明

1.1.4.1 第一行不作为列名(字段名)
df_txt_2 = pd.read_table('./data/my_table.txt', header=None)
df_txt_2.head()

在这里插入图片描述
可以发现,第一行数据不作为数据表字段了,而是到了第二行
pandas为这个数据自动生成了一串序号作为列名

1.1.4.2 设置两列作为索引
df_csv_2 = pd.read_csv('./data/my_csv.csv', index_col=['col1', 'col2'])
df_csv_2.head()

在这里插入图片描述
可以看到,索引列包括了col1和col2

1.1.4.3 不读取所有列,只读取两列
df_txt_3 = pd.read_table('./data/my_table.txt', usecols=['col1', 'col2'])
df_txt_3.head()

在这里插入图片描述
数据只读取了col1和col2列

1.1.4.4 将某列转化为时间格式
df_csv_3 = pd.read_csv('./data/my_csv.csv', parse_dates=['col5'])
df_csv_3.info()

在这里插入图片描述
在这里插入图片描述
col5的dtype从object转换成为为datetime64[ns]

1.1.4.5 只读取部分行
df_excel_2 = pd.read_excel('./data/my_excel.xlsx', nrows=2, engine='openpyxl')
print(df_excel_2)

的确,数据只读取了两行

1.1.4.5 txt分割后读取

在读取 txt 文件时,经常遇到分隔符非空格的情况
read_table 有一个分割参数 sep ,它使得用户可以自定义分割符号,进行 txt 数据的读取。
例如,下面的读取的表以 |||| 为分割

df_txt_special_sep = pd.read_table('./data/my_table_special_sep.txt')
df_txt_special_sep.head()

在这里插入图片描述
利用sep参数重新读取,同时需要指定引擎为python,’|'需要加上斜杠转义

df_txt_special_sep_2 = pd.read_table('./data/my_table_special_sep.txt', sep='\|\|\|\|', engine='python')
df_txt_special_sep_2.head()

在这里插入图片描述

1.2 数据写入

一般在数据写入中,最常用的操作是把 index 设置为 False ,特别当索引没有特殊意义的时候,这样的行为能把索引在保存的时候去除。

df_csv.head()

在这里插入图片描述

df_csv.to_csv('./data/my_csv_saved.csv', index=False)
df_excel.to_excel('./data/my_excel_saved.xlsx', index=False)

pandas没有定义to_table函数,但是to_csv可以保存为txt文件,并且允许自定义分割符
常用制表符\t分割

df_txt.to_csv('./data/my_txt_saved.txt', sep='t', index=False)

将表格转换为markdown和latex语言,可以使用to_markdown和to_latex函数
----pip install tabulate

print(df_csv.to_markdown())

在这里插入图片描述

print(df_csv.to_latex())

在这里插入图片描述

2 基本数据结构

pandas 中具有两种基本的数据存储结构:
存储一维 values 的 Series
存储二维 values 的 DataFrame
在这两种结构上定义了很多的属性和方法

2.1 Series

Series 一般由四个部分组成:序列的值 data 、索引 index 、存储类型 dtype 、序列的名字 name
其中,索引也可以指定它的名字,默认为空。

s = pd.Series(data=[100, 'a', {'dic1': 5}], 
              index=pd.Index(['id1', 20, 'third'], name='my_idx'), 
              dtype='object', 
              name='my_name')

print(s)

在这里插入图片描述
object 代表了一种混合类型
正如上面的例子中存储了整数、字符串以及 Python 的字典数据结构
此外,目前 pandas 把纯字符串序列也默认认为是一种 object 类型的序列,但它也可以用 string 类型存储。
对于上述属性,可以通过.的方式获取
在这里插入图片描述
利用.shape可以获取序列长度

s.shape

在这里插入图片描述
索引是 pandas 中最重要的概念之一
如果想要取出单个索引对应的值,可以通过 [index_item] 可以取出。

s['third']

在这里插入图片描述

2.2 DataFrame

DataFrame 在 Series 的基础上增加了列索引
一个数据框可以由二维的 data 与行列索引来构造

data = [[1, 'a', 1.2], [2, 'b', 2.2], [3, 'c', 3.2]]
df = pd.DataFrame(data=data, 
                  index=['row_%d'%i for i in range(3)], 
                  columns=['col_%d'%j for j in range(3)])

在这里插入图片描述
一般而言,更多的时候会采用从列索引名到数据的映射来构造数据框,同时再加上行索引

df = pd.DataFrame(data={'col_0': [1, 2, 3], 
                       'col_1': list('abc'), 
                       'col_2': [1.2, 2.2, 3.2]}, 
                 index=['row_%d'%k for k in range(3)])

在这里插入图片描述
由于这种映射关系,在 DataFrame 中可以用 [col_name] 与 [col_list] 来取出相应的列与由多个列组成的表
结果分别为 Series 和 DataFrame

df['col_0']

在这里插入图片描述

df[['col_0', 'col_1']]

在这里插入图片描述
与 Series 类似,在数据框中同样可以取出相应的属性
在这里插入图片描述
在这里插入图片描述

3 常用基本函数

为了进行举例说明,在接下来的部分和其余章节都将会使用一份 learn_pandas.csv 的虚拟数据集
它记录了四所学校学生的体测个人信息

df = pd.read_csv('./data/learn_pandas.csv')

df.head()

在这里插入图片描述

# 本章使用前7列
df = df[df.columns[:7]]
df.head()

在这里插入图片描述

3.1 汇总函数

head, tail 函数分别表示返回表或者序列的前 n 行和后 n 行,其中 n 默认为5。

df.tail()

在这里插入图片描述
info, describe 分别返回表的 信息概况 和表中 数值列对应的主要统计量
在这里插入图片描述
info()可以看到每个字段的基本情况,包括字段名,字段数据数,字段类型

df.describe()

在这里插入图片描述
describe()只针对数值型数据进行统计;
info, describe 只能实现较少信息的展示,如果想要对一份数据集进行全面且有效的观察,特别是在列较多的情况下,推荐使用 pandas-profiling 包。

3.2 特征统计函数

在 Series 和 DataFrame 上定义了许多统计函数,最常见的是 sum, mean, median, var, std, max, min

df_demo = df[['Height', 'Weight']]

在这里插入图片描述
此外,需要介绍的是 quantile, count, idxmax 这三个函数
它们分别返回的是分位数、非缺失值个数、最大值对应的索引;

# 分位数,默认0.5中位数,可以选择上下四分位数
df_demo.quantile()

# 计数(缺失值不计入)
df_demo.count()

# 最值对应的索引
print(df_demo.idxmax())
print(df_demo.idxmin())

在这里插入图片描述
上面这些所有的函数,由于操作后返回的是标量,所以又称为聚合函数,它们有一个公共参数 axis ,默认为0代表逐列聚合,如果设置为1则表示逐行聚合

3.3 唯一值函数

对序列使用 unique 和 nunique 可以分别得到其唯一值组成的列表和唯一值的个数

# 得到唯一值组成的列表
df['School'].unique()

在这里插入图片描述

# 得到唯一值的个数
df['School'].nunique()

在这里插入图片描述

# value_counts可以得到唯一值和其对应出现的频数,有点分组统计的样子
df['School'].value_counts()

在这里插入图片描述
如果想要观察多个列组合的唯一值,可以使用 drop_duplicates 。
其中的关键参数是 keep
默认值 first 表示每个组合保留第一次出现的所在行
last 表示保留最后一次出现的所在行
False 表示把所有重复组合所在的行剔除

df_demo = df[['Gender', 'Transfer', 'Name']]

df_demo.drop_duplicates(['Gender', 'Transfer'])

在这里插入图片描述

# 对于重复数据保留最后一次出现的所在行
df_demo.drop_duplicates(['Gender', 'Transfer'], keep='last')

在这里插入图片描述

# 保留只出现过一次的性别和姓名组合,即重复数据全部不保留
df_demo.drop_duplicates(['Name', 'Gender'], keep=False).head()

在这里插入图片描述
去重功能在Series也可以使用
在这里插入图片描述
此外, duplicated 和 drop_duplicates 的功能类似
前者返回了是否为唯一值的布尔列表,其 keep 参数与后者一致。
其返回的序列,把重复元素设为 True ,否则为 False

drop_duplicates 等价于把 duplicated 为 True 的对应行剔除

df_demo.duplicated(['Gender', 'Transfer']).head()

在这里插入图片描述

# Series上也可以使用
df['School'].duplicated().head()

在这里插入图片描述

3.4 替换函数

一般而言,替换操作是针对某一个列进行的,因此下面的例子都以 Series 举例
pandas 中的替换函数可以归纳为三类:映射替换、逻辑替换、数值替换;其中映射替换包含:
replace 方法
str.replace 方法
cat.codes 方法

此处介绍 replace 的用法
在 replace 中,可以通过字典构造,或者传入两个列表来进行替换

# 女性用0表示,男性用1表示
df['Gender'].replace({'Female': 0, 'Male': 1}).head()

在这里插入图片描述

df['Gender'].replace(['Female', 'Male'], [0, 1]).head()

在这里插入图片描述
另外, replace 还有一种特殊的方向替换
指定 method 参数为 ffill - 则为用前面一个最近的未被替换的值进行替换;
bfill - 则使用后面最近的未被替换的值进行替换

从下面的例子可以看到,它们的结果是不同的

s = pd.Series(['a', 1, 'b', 2, 1, 1, 'a'])

s.replace([1, 2], method='ffill')

在这里插入图片描述

s.replace([1, 2], method='bfill')

在这里插入图片描述
虽然对于 replace 而言可以使用正则替换,但是当前版本下对于 string 类型的正则替换还存在 bug
因此如有此需求,请选择 str.replace 进行替换操作;

逻辑替换包括了 where 和 mask ,这两个函数是完全对称的:
where 函数在传入条件为 False 的对应行进行替换
而 mask 在传入条件为 True 的对应行进行替换,
当不指定替换值时,替换为缺失值。

s = pd.Series([-1, 1.2345, 100, -50])
# where - 把条件为False的替换掉
s.where(s<0)

在这里插入图片描述

# mask - 把条件为True的替换掉
s.mask(s<0)

在这里插入图片描述

s.mask(s<0, -50)

在这里插入图片描述

# 传入的条件只需是与被调用的 Series 索引一致的布尔序列即可
s_condition = pd.Series([True, False, False, True], index=s.index)
s_condition

在这里插入图片描述

s.mask(s_condition, -50)

在这里插入图片描述
数值替换包含了 round, abs, clip 方法,它们分别表示按照给定精度四舍五入、取绝对值和截断

# 所有元素替换成该元素的给定精度四舍五入
s.round(2)

在这里插入图片描述

# 所有元素替换成该元素的给定精度四舍五入
s.round(2)

在这里插入图片描述

# 所有元素按其绝对值替换
s.abs()

在这里插入图片描述

# 按照给点的边界截断
s.clip(0, 2)

在这里插入图片描述


练一练

在 clip 中,超过边界的只能截断为边界值,如果要把超出边界的替换为自定义的值,应当如何做?

# clip(a, b)后,如果超过边界,那只能是a或b; a替换成-99,b替换成99
s.clip(0, 2).replace({2: 99, 0: -99})

在这里插入图片描述

3.5 排序函数

排序共有两种方式,其一为值排序,其二为索引排序,对应的函数是 sort_values 和 sort_index 。

为了演示排序函数,下面先利用 set_index 方法把年级和姓名两列作为索引

df_demo = df[['Grade', 'Name', 'Height', 'Weight']].set_index(['Grade', 'Name'])
df_demo.head()

在这里插入图片描述

# 对身高升序排序
df_demo.sort_values('Height').head()

在这里插入图片描述

# 对身高降序排序
df_demo.sort_values('Height', ascending=False).head()

在这里插入图片描述

# 在体重相同的情况下,对身高进行排序,并且保持身高降序排列,体重升序排列
df_demo.sort_values(['Weight', 'Height'], ascending=[True, False]).head()

在这里插入图片描述
索引排序的用法和值排序完全一致,只不过元素的值在索引中,此时需要指定索引层的名字或者层号,用参数 level 表示。
另外,需要注意的是字符串的排列顺序由字母顺序决定

df_demo.sort_index(level=['Grade', 'Name'], ascending=[True, False]).head()

在这里插入图片描述

3.6 apply方法

apply 方法常用于 DataFrame 的行迭代或者列迭代,它的 axis 含义与第2小节中的统计聚合函数一致
apply 的参数往往是一个以序列为输入的函数

df_demo = df_demo[['Height', 'Weight']]


def my_mean(x):
    res = x.mean()
    return res


df_demo.apply(my_mean)

在这里插入图片描述
可以利用 lambda 表达式使得书写简洁,这里的 x 就指代被调用的 df_demo 表中逐个输入的序列

df_demo.apply(lambda x: x.mean())

在这里插入图片描述
利用 apply 计算升高和体重的 mad 指标
对比一下执行效率

df_demo.apply(lambda x: (x - x.mean()).abs().mean())

在这里插入图片描述

# 使用内置的mad函数
df_demo.mad()

在这里插入图片描述
得益于传入自定义函数的处理, apply 的自由度很高,但这是以性能为代价的。
一般而言,使用 pandas 的内置函数处理和 apply 来处理同一个任务,其速度会相差较多
因此只有在确实存在自定义需求的情境下才考虑使用 apply

4 窗口对象

pandas 中有3类窗口,分别是滑动窗口 rolling 、扩张窗口 expanding 以及指数加权窗口 ewm
需要说明的是,以日期偏置为窗口大小的滑动窗口将在第十章讨论,指数加权窗口见本章练习

4.1 滑窗对象

要使用滑窗函数,就必须先要对一个序列使用 .rolling 得到滑窗对象,其最重要的参数为窗口大小 window

s = pd.Series([1, 2, 3, 4, 5])
roller = s.rolling(window=3)

在这里插入图片描述
为何要引入窗口函数
因为有些特殊的时序数据难以直接进行操作。
窗口函数方便处理时序数据,解决了滞后性和数据分布的不稳定性。
主要用于通过平滑曲线来以图形方式查找数据内的趋势

在这里插入图片描述
window = 数值型int --> 计算统计量的观测值的数量,及从第0个元素开始,
向前数window个,然后在使用后面定义的函数
window = offset时间偏移量 --> 表示时间窗的大小

s = pd.Series([1,2,3,4,5]) --> [1,2,3,4,5]
经过:s.rolling(window=3) -->
从第0个下标,往前数3个,[空,空 ,1]
从第1个下标,往前数3个,[空,1 , 2]
从第2个下标,往前数3个,[1, 2, 3]
从第3个下标,往前数3个,[2, 3, 4]
从第4个下标,往前数3个,[3, 4, 5]
然后得到的元素,在经过统计函数,mean()进行计算。
第n个元素的值将是n,n-1和n-2元素的平均值
便形成了:
0 NaN
1 NaN
2 2.0
3 3.0
4 4.0

还支持使用 apply 传入自定义函数,其传入值是对应窗口的 Series ,例如上述的均值函数可以等效表示

roller.apply(lambda x:x.mean())

在这里插入图片描述
shift, diff, pct_change 是一组类滑窗函数,它们的公共参数为 periods=n ,默认为1
shift - 取向前第 n 个元素的值
diff - 与向前第 n 个元素做差(与 Numpy 中不同,后者表示 n 阶差分)
pct_change - 与向前第 n 个元素相比计算增长率。这里的 n 可以为负,表示反方向的类似操作

s = pd.Series([1, 3, 6, 10, 15])

# 取向前第 n 个元素的值
s.shift(2)

在这里插入图片描述

# 与向前第 n 个元素相比计算增长率
s.pct_change()

在这里插入图片描述
在这里插入图片描述
将其视作类滑窗函数的原因是,它们的功能可以用窗口大小为 n+1 的 rolling 方法等价代替

 如下面列表,取每个元素窗口列表的第一个元素,等价与将s往前移2'''
s = pd.Series([1,3,6,10,15])--> [1,3,6,10,15]
    经过:s.rolling(window=3)  -->  
            从第0个下标,往前数3个,[空,空 ,1]
            从第1个下标,往前数3个,[空,1 , 3]
            从第2个下标,往前数3个,[1, 3, 6]
            从第3个下标,往前数3个,[3, 6, 10]
            从第4个下标,往前数3个,[6, 10,15]
'''
s.rolling(3).apply(lambda x: list(x)[0])
# 等价于s.diff(3)
s.rolling(4).apply(lambda x: list(x)[-1] - list(x)[0])

在这里插入图片描述

def my_pct(x):
    L = list(x)
    return L[-1] / L[0] - 1


# 等价s.pct_change(1)
s.rolling(2).apply(my_pct)

在这里插入图片描述

4.2 扩张窗口

扩张窗口又称累计窗口,可以理解为一个动态长度的窗口
其窗口的大小就是从序列开始处到具体操作的对应位置,其使用的聚合函数会作用于这些逐步扩张的窗口上
具体地说,设序列为a1, a2, a3, a4,则其每个位置对应的窗口即[a1]、[a1, a2]、[a1, a2, a3]、[a1, a2, a3, a4]

s = pd.Series([1, 3, 6, 10])
s.expanding().mean()

在这里插入图片描述

5 练习

5.1 口袋妖怪数据集

现有一份口袋妖怪的数据集,下面进行一些背景说明:

‘#’ 代表全国图鉴编号,不同行存在相同数字则表示为该妖怪的不同状态

妖怪具有单属性和双属性两种,对于单属性的妖怪, Type 2 为缺失值

Total, HP, Attack, Defense, Sp. Atk, Sp. Def, Speed 分别代表种族值、体力、物攻、防御、特攻、特防、速度,其中种族值为后6项之和;

1.对 HP, Attack, Defense, Sp. Atk, Sp. Def, Speed 进行加总,验证是否为 Total 值。

2.对于 # 重复的妖怪只保留第一条记录,解决以下问题:

求第一属性的种类数量和前三多数量对应的种类

求第一属性和第二属性的组合种类

求尚未出现过的属性组合

3.按照下述要求,构造 Series :

取出物攻,超过120的替换为 high ,不足50的替换为 low ,否则设为 mid

取出第一属性,分别用 replace 和 apply 替换所有字母为大写

求每个妖怪六项能力的离差,即所有能力中偏离中位数最大的值,添加到 df 并从大到小排序
data = pd.read_csv('./data/pokemon.csv')

在这里插入图片描述
在这里插入图片描述

A1

columns = ['HP', 'Attack', 'Defense', 'Sp. Def', 'Sp. Atk', 'Speed']

data['Total_unsure'] = data[columns].sum(axis=1)

data['Total_seq'] = data['Total'] == data['Total_unsure']

data.groupby('Total_seq')['#'].count()

在这里插入图片描述
800条数据的Total值都是后6项能力数值的加总无误

A2

# 去重
data.drop_duplicates(subset=['#'], keep='first', inplace=True)

data.info()
'''去重后剩余721条记录'''

在这里插入图片描述

# 第一属性的种类数量和前三多数量对应的种类
len(data.groupby('Type 1')['#'].count().sort_values(ascending=False))
# len(set(data['Type 1']))

第一属性的种类数量有18种

data.groupby('Type 1')['#'].count().sort_values(ascending=False)

在这里插入图片描述
其中,前三多数量对应的种类为Water(水),Normal(普通),Grass(草)

# 第一属性和第二属性的组合种类
data.groupby(['Type 1', 'Type 2'])['#'].count()

在这里插入图片描述
第一属性和第二属性的组合种类有125种

# 求尚未出现过的属性组合
## 先看一下都有哪些属性
Type_1 = set(data['Type 1'])
Type_1

在这里插入图片描述

Type_2 = set(data['Type 2'])
Type_2

在这里插入图片描述
可以看出,种类一共就18种

# 看一下数据集里出现了多少组合
data['Type'] = data['Type 1'] + '-' + data['Type 2']

Type = set(data['Type'])

len(Type)

'''126'''

通过观察发现,属性A-B不会出现B-A的重复项

Type_list = []
for i in Type_1:
    Type_list.append(i)


# 故人工组合一下所有可能的组合
'''17+16+...+1=153'''
list = []
for i in range(0, 18):
    type_1 = Type_list[i]
    k = i + 1
    while k < 18:
        type_2 = Type_list[k]
        list.append(str(type_1) + '-' + str(type_2))
        k += 1


len(list)
'''153   正好是所有组合'''
# Type是数据中出现的组合
# list是153种所有可能出现的组合

list_other = []
for i in Type:
    if i not in list:
        list_other.append(i)

在这里插入图片描述

A3

按照下述要求,构造 Series :

取出物攻,超过120的替换为 high ,不足50的替换为 low ,否则设为 mid

取出第一属性,分别用 replace 和 apply 替换所有字母为大写

求每个妖怪六项能力的离差,即所有能力中偏离中位数最大的值,添加到 df 并从大到小排序
def func_1(x):
    if x < 50:
        return 'low'
    elif x <= 120:
        return 'mid'
    else:
        return 'high'


data['Attack_level'] = data['Attack'].apply(lambda x : func_1(x))


data[['Attack', 'Attack_level']].head()

在这里插入图片描述

取出第一属性,分别用 replace 和 apply 替换所有字母为大写

# replace
data['Type 1'].replace({i: str.upper(i) for i in data['Type 1'].unique()}).head()

在这里插入图片描述

# apply
data['Type 1'].apply(lambda x: str.upper(x)).head()

在这里插入图片描述
求每个妖怪六项能力的离差,即所有能力中偏离中位数最大的值,添加到 df 并从大到小排序

data['Deviation'] = data[columns].apply(lambda x:np.max((x-x.median()).abs()), 1)

data.sort_values('Deviation', ascending=False).head()

在这里插入图片描述

5.2 指数加权窗口

作为扩张窗口的 ewm 窗口

在扩张窗口中,用户可以使用各类函数进行历史的累计指标统计,但这些内置的统计函数往往把窗口中的所有元素赋予了同样的权重。事实上,可以给出不同的权重来赋给窗口中的元素,指数加权窗口就是这样一种特殊的扩张窗口

其中,最重要的参数是 alpha ,它决定了默认情况下的窗口权重为 𝑤𝑖=(1−𝛼)𝑖,𝑖∈{0,1,…,𝑡} ,其中 𝑖=𝑡 表示当前元素, 𝑖=0 表示序列的第一个元素

从权重公式可以看出,离开当前值越远则权重越小,若记原序列为 x ,更新后的当前元素为 𝑦𝑡 ,此时通过加权公式归一化后可知
在这里插入图片描述
对于 Series 而言,可以用 ewm 对象如下计算指数平滑后的序列:

np.random.seed(0)
s = pd.Series(np.random.randint(-1, 2, 30).cumsum())

s.head()
s.ewm(alpha=0.2).mean().head()

在这里插入图片描述


请用expending窗口实现

def ewm_func(x, alpha=0.2):
    win = (1-alpha)**np.arange(x.shape[0])[::-1]
    res = (win*x).sum()/win.sum()
    return res


s.expanding().apply(ewm_func).head()

在这里插入图片描述

作为滑动窗口的 ewm 窗口

从第1问中可以看到, ewm 作为一种扩张窗口的特例,只能从序列的第一个元素开始加权。现在希望给定一个限制窗口 n ,只对包含自身的最近的 n 个元素作为窗口进行滑动加权平滑。请根据滑窗函数,给出新的 𝑤𝑖 与 𝑦𝑡 的更新公式,并通过 rolling 窗口实现这一功能;

s.rolling(window=4).apply(ewm_func).head()

在这里插入图片描述

6 总结

这一章节学下来,感觉pandas零零碎碎的函数和属性是非常多的,每个分解来看都不难,难的是融会贯通,难的是在特定场景下最高效快捷地解决问题;
而且从练习题可以看出,想要学好pandas和numpy,数学的逻辑的基本功底还是要有一些的。抽空最好补充一下线性代数方面的知识,不然numpy会比较困难。
希望大家能有收获,下次学习我们继续~

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值