新准则金融资产三分类:AMC、FVOCI和FVTPL

【一】、四分类转三分类

新准则之前,原金融资产的分类分别为:

1. 以公允价值计量且其变动计入当期损益的金融资产(financial asset measured at fair value through profit & loss, FVTPL);
2. 持有至到期投资(held-to-maturity investment);
3. 贷款和应收款项(loan and account receivable);
4. 可供出售金融资产(available-for-sale financial asset)

新准则下金融资产的分类为:

1. 以公允价值计量且其变动计入当期损益的金融资产(financial asset measured at fair value through profit & loss, FVTPL);
2. 以公允价值计量且其变动计入其他综合收益的金融资产(financial asset over comprehensive income,FVOCI);
3. 以摊余成本计量的金融资产(financial assets measured at amortized cost, AMC)

【二】、对三分类的理解

新准则下的以公允价值计量且其变动计入当期损益的金融资产在原准则下就已存在,新准则下的以公允价值计量且其变动计入其他综合收益的金融资产类似于但不完全等同于原准则下的可供出售金融资产,新准则下的以摊余成本计量的金融资产类似于但不完全等同于原准则下的持有至到期投资。
新准则金融资产三分类就是指根据金融资产的业务模式和合同现金流量特征,把金融资产分为AMC、FVOCI和FVTPL三类。

一、AMC

我理解为葛优躺着,等着收钱。

根据该准则,当两个条件同时满足时,可以在摊余成本中确认为金融资产。

1.以收集合同现金流为目标;
2.特定日期产生的现金流仅是基于未付本金的本金和利息的支付。

首先是动机层面。你以固定利率购买债券,到期时偿还本金和利息。你不想为此担心或承担高风险。你只是想让葛优躺下来赚钱,并一直持有到世界末日。
第二,条件水平。投资这类资产的目的是首先保护资本。至少我不会赔钱。必须收回本金,然后才有利息收入。如果是固定利率,当然越高越好;如果是浮动的,应该与最权威的利率挂钩,即银行同期的贷款利率,这是符合基本贷款安排的。它不应该与其他混乱的事情联系在一起,比如公司利润和黄金价格。让我平静地躺下来赚钱,突出一个稳定的词。

二、FVOCI

FVOCI也是新准则金融资产三分类之一,它规定企业管理金融资产的业务模式旨在收集合同现金流和出售金融资产。
所有人。正常情况下,我是躺在葛优,但是虽然我的眼睛眯了,耳朵却很敏感,而且我总是关注资产的价格。如果它突然上涨,我会卖掉它。那么为什么这类资产要将公允价值变动的损益划分为其他综合收益呢?
因为你买了这个资产,你已经签了一个合同,根据未支付的本金金额指明了本金和利息的合同条款,所以从逻辑上讲,你最初买这个资产只是为了收取合同产生的现金流。只有当这种资产上升并盈利时,你才会跳出沙发,以现金出售。在这种情况下,我不认为你出售金融资产套现的行为是你购买资产的主要动机。不允许将公允价值的变动计入当期损益表,但要计入所有者权益。

三、FVTPL

除按摊余成本计量的金融资产和按公允价值计量且其变动计入其他综合收益的金融资产外,企业应将其归类为按公允价值计量且其变动计入当期损益的金融资产。
在这个时候,你不是葛优,你是一个有勇气和想法的年轻人。购买金融资产的目的不是收取合同现金流,保护资本和收取微薄的利息。你有你自己的想法,你对未来某些资产的升值持乐观态度,乐观地认为一家公司的股票会上涨,你大胆地杀死它以获取利润,但你不怕赔了夫人又折兵。

Fisher准则是一种经典的线性判别分析方法,用于将高维数据降维后实现分类。在三维模式样本分类中,我们可以利用Fisher准则将三维数据降到一维,然后通过设定一个阈值来判断分类。 具体的实现步骤如下: 1.计算每个类别的均值向量协方差矩阵。 2.计算总体均值向量总体协方差矩阵。 3.计算Fisher准则中的类间离散度矩阵类内离散度矩阵。 4.计算Fisher准则中的权重向量。 5.将三维数据投影到一维,根据设定的阈值进行分类。 示例代码如下: ```python import numpy as np # 生成三维样本数据 class1 = np.random.randn(20, 3) class2 = np.random.randn(20, 3) + 5 # 计算均值向量协方差矩阵 mean1 = np.mean(class1, axis=0) mean2 = np.mean(class2, axis=0) cov1 = np.cov(class1.T) cov2 = np.cov(class2.T) # 计算总体均值向量总体协方差矩阵 mean_total = (mean1 + mean2) / 2 cov_total = (cov1 + cov2) / 2 # 计算类间离散度矩阵类内离散度矩阵 sw = cov1 + cov2 sb = np.dot((mean1 - mean2).reshape(-1, 1), (mean1 - mean2).reshape(1, -1)) # 计算权重向量 w = np.dot(np.linalg.inv(sw), (mean1 - mean2)) # 投影到一维 class1_proj = np.dot(class1, w) class2_proj = np.dot(class2, w) # 设定阈值进行分类 threshold = (np.mean(class1_proj) + np.mean(class2_proj)) / 2 result1 = class1_proj > threshold result2 = class2_proj > threshold ``` 其中,result1result2分别是class1class2的分类结果,True表示属于该类别,False表示不属于。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值