上篇文章已经简单的介绍了Hystrix的请求熔断和服务降级,本篇文章将介绍剩下的三个特性。
线程隔离:在Hystrix中, 主要通过线程池来实现资源隔离. 通常在使用的时候我们会根据调用的远程服务划分出多个线程池.比如说,一个服务调用两外两个服务,你如果调用两个服务都用一个线程池,那么如果一个服务卡在哪里,资源没被释放,后面的请求又来了,导致后面的请求都卡在哪里等待,导致你依赖的A服务把你卡在哪里,耗尽了资源,也导致了你另外一个B服务也不可用了。这时如果依赖隔离,某一个服务调用A B两个服务,如果这时我有100个线程可用,我给A服务分配50个,给B服务分配50个,这样就算A服务挂了,我的B服务依然可以用。
用法:使用注解的用法:加上groupKey和threadPoolKey,根据这两个参数进行线程池的划分
@HystrixCommand(groupKey = "",threadPoolKey = "",fallbackMethod = "helloFallBack")
如果不用注解,就需要在Command的构造器中进行指定。
请求缓存:
为什么要有请求缓存?
做微服务的主要目的就是为了缓解高并发。如果调用一个服务调用的太频繁,缓存一下效果会更好,直接从缓存中取,而不是去服务中取,以减轻服务的压力。但是Hystrix的缓存比较鸡肋。
代码实操:
只需要在继承了HystrixCommand的类中重写getCacheKey()方法即可。
@Override
protected String getCacheKey() {
//这里返回的就先写死了
return "hello";
}
另外:需要在Controller中进行如下配置:
HystrixRequestContext.initializeContext();
否则报错如下:
java.lang.IllegalStateException: Request caching is not available. Maybe you need to initialize the HystrixRequestContext?
at com.netflix.hystrix.HystrixRequestCache.get(HystrixRequestCache.java:104) ~[hystrix-core-1.5.12.jar:1.5.12]
at com.netflix.hystrix.AbstractCommand$7.call(AbstractCommand.java:478) ~[hystrix-core-1.5.12.jar:1.5.12]
其实由这里我们就可以看出,这个请求是基于Request的,请求结束就销毁了,就代表着上面的初始化结束了,之前设置的缓存也就没有了,即每次请求都是不一样的缓存。
现在启动项目,访问localhost:9000/consumer
访问被分到其中一个服务上去了:
再刷新页面一次,发现请求并没有走缓存,依然去访问的服务。也就是说每次请求来了都会去进行初始化。
但是,如果代码如下的话,缓存就会生效:同样的commandGroupKey在一个业务里调用多次。
@RequestMapping("/consumer")
public String helloConsumer() throws ExecutionException, InterruptedException {
HystrixRequestContext.initializeContext();
HelloServiceCommand command = new HelloServiceCommand("hello",restTemplate);
command.execute();
HelloServiceCommand command1 = new HelloServiceCommand("hello",restTemplate);
command1.execute();
return null;
}
请求缓存就到这里,不做太多解释了。
请求合并:也是降低对服务的调用次数。
代码实操:
首先自定义一个继承HystrixCollapser的类:
package com.cloud.demo.consumer;
import com.netflix.hystrix.HystrixCollapser;
import com.netflix.hystrix.HystrixCollapserKey;
import com.netflix.hystrix.HystrixCollapserProperties;
import com.netflix.hystrix.HystrixCommand;
import org.springframework.web.client.RestTemplate;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.stream.Collectors;
/**
操作请求合并
List:批量请求返回类型
String:单个请求
Long:请求类型
*/
public class ZnxBatchCommand extends HystrixCollapser<List<String>,String,Long>{
//单个请求的id
private Long id;
private RestTemplate restTemplate;
/**
*@Author ZNX
*@Date 2018/8/6 22:40
*@Description:
* .withTimerDelayInMilliseconds(200):用来甄别合并请求的力度
*/
public ZnxBatchCommand(RestTemplate restTemplate, Long id) {
super(Setter.withCollapserKey(HystrixCollapserKey.Factory.asKey("laowangbatch"))
.andCollapserPropertiesDefaults(HystrixCollapserProperties.Setter()
.withTimerDelayInMilliseconds(200)));
this.id = id;
this.restTemplate = restTemplate;
}
@Override
public Long getRequestArgument() {
return id;
}
/**
*@Author ZNX
*@Date 2018/8/6 22:42
*@Description:进行请求的合并
*/
@Override
protected HystrixCommand<List<String>> createCommand(Collection<CollapsedRequest<String, Long>> collection) {
List<Long> ids = new ArrayList<>(collection.size());
ids.addAll(collection.stream().map(CollapsedRequest::getArgument).collect(Collectors.toList()));
//发送请求
ZnxCommand command = new ZnxCommand("laowang",restTemplate,ids);
return command;
}
/**
*@Author ZNX
*@Date 2018/8/6 22:39
*@Description:分发请求结果
*/
@Override
protected void mapResponseToRequests(List<String> results, Collection<CollapsedRequest<String, Long>> collection) {
System.out.println("分配批量请求结果。。。");
int count=0;
for (CollapsedRequest<String, Long> collapsedRequest : collection) {
String result = results.get(count++);
collapsedRequest.setResponse(result);
}
}
}
接着用自定义一个类来继承Hystrix提供的HystrixCommand来进行服务请求:
package com.cloud.demo.consumer;
import com.netflix.hystrix.HystrixCommand;
import com.netflix.hystrix.HystrixCommandGroupKey;
import org.apache.commons.lang.StringUtils;
import org.springframework.web.client.RestTemplate;
import java.util.Arrays;
import java.util.List;
/**
*@Author ZNX
*@Date 2018/8/6 22:34
*@Description:这个command就是用来发送请求的
*/
public class ZnxCommand extends HystrixCommand<List<String>>{
private RestTemplate restTemplate;
private List<Long> ids;
protected ZnxCommand(String commandGroupKey, RestTemplate restTemplate, List<Long> ids) {
super(HystrixCommandGroupKey.Factory.asKey(commandGroupKey));
this.restTemplate=restTemplate;
this.ids=ids;
}
@Override
protected List<String> run() throws Exception {
System.out.println("发送请求。。。参数为:"+ids.toString()+Thread.currentThread().getName());
String[] result = restTemplate.getForEntity("http://HELLO-SERVICE/znxs?ids={1}",String[].class, StringUtils.join(ids,",")).getBody();
return Arrays.asList(result);
}
}
Controller代码如下:
package com.cloud.demo.consumer;
import com.netflix.hystrix.HystrixRequestCache;
import com.netflix.hystrix.strategy.concurrency.HystrixRequestContext;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.client.ServiceInstance;
import org.springframework.cloud.client.loadbalancer.LoadBalancerClient;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.client.RestTemplate;
import rx.Observable;
import rx.Observer;
import java.net.URI;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
@RestController
public class ConsumerController {
@Autowired
private LoadBalancerClient loadBalancerClient;
@Autowired
private HelloService helloService;
@Autowired
private RestTemplate restTemplate;
@RequestMapping("/consumer")
public String helloConsumer() throws ExecutionException, InterruptedException {
HystrixRequestContext context = HystrixRequestContext.initializeContext();
/*
创建三个请求
*/
ZnxBatchCommand command = new ZnxBatchCommand(restTemplate,1L);
ZnxBatchCommand command1 = new ZnxBatchCommand(restTemplate,1L);
ZnxBatchCommand command2 = new ZnxBatchCommand(restTemplate,1L);
/*
用Future去异步获取
*/
Future<String> future = command.queue();
Future<String> future1 = command1.queue();
String r = future.get();
String r1 = future1.get();
//睡2s,错过之前设置的200ms
//前两条请求会被合并
Thread.sleep(2000);
Future<String> future2 = command2.queue();
String r2 = future2.get();
System.out.println(r);
System.out.println(r1);
System.out.println(r2);
context.close();
return null;
}
}
给服务提供者增加一个方法用来模拟数据库数据:
package com.cloud.demo.hello;
import org.springframework.web.bind.annotation.*;
import java.util.ArrayList;
import java.util.List;
/**
*/
@RestController
public class HelloController {
@RequestMapping("/hello")
public String hello () throws InterruptedException {
System.out.println("访问来了。。");
Thread.sleep(800);
return "hello cloud";
}
@RequestMapping("/znxs")
public List<String> znxs(String ids){
List<String> list = new ArrayList<>();
list.add("laowang1");
list.add("laowang2");
list.add("laowang3");
return list;
}
}
启动项目,访问localhost:9000/consumer
通过控制台可以看到,请求1和2被合并,请求3为单独的一个请求。
使用注解实现请求合并:
package com.cloud.demo.consumer;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCollapser;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixProperty;
import org.apache.commons.lang.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.Future;
@Service
public class ZnxService {
@Autowired
private RestTemplate restTemplate;
@HystrixCollapser(batchMethod = "getZnx",collapserProperties = {@HystrixProperty(name = "timerDelayInMilliseconds",value = "200")})
public Future<String> batchGetHjc(long id){
return null;
}
@HystrixCommand
public List<String> getLaoWang(List<Long> ids){
System.out.println("发送请求的参数为:"+ids.toString()+Thread.currentThread().getName());
String[] result = restTemplate.getForEntity("http://HELLO-SERVICE/znxs?ids={1}",String[].class, StringUtils.join(ids,",")).getBody();
return Arrays.asList(result);
}
}
常用的Hystrix属性:
1.Execution相关的属性的配置:
-
hystrix.command.default.execution.isolation.strategy 隔离策略,默认是Thread, 可选Thread|Semaphore
-
hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds 命令执行超时时间,默认1000ms
- hystrix.command.default.execution.timeout.enabled 执行是否启用超时,默认启用true
- hystrix.command.default.execution.isolation.thread.interruptOnTimeout 发生超时是是否中断,默认true
- hystrix.command.default.execution.isolation.semaphore.maxConcurrentRequests 最大并发请求数,默认10,该参数当使用ExecutionIsolationStrategy.SEMAPHORE策略时才有效。如果达到最大并发请求数,请求会被拒绝。理论上选择semaphore size的原则和选择thread size一致,但选用semaphore时每次执行的单元要比较小且执行速度快(ms级别),否则的话应该用thread。
semaphore应该占整个容器(tomcat)的线程池的一小部分。
2.Fallback相关的属性
这些参数可以应用于Hystrix的THREAD和SEMAPHORE策略
- hystrix.command.default.fallback.isolation.semaphore.maxConcurrentRequests 如果并发数达到该设置值,请求会被拒绝和抛出异常并且fallback不会被调用。默认10
- hystrix.command.default.fallback.enabled 当执行失败或者请求被拒绝,是否会尝试调用hystrixCommand.getFallback() 。默认true
3.Circuit Breaker相关的属性
- hystrix.command.default.circuitBreaker.enabled 用来跟踪circuit的健康性,如果未达标则让request短路。默认true
- hystrix.command.default.circuitBreaker.requestVolumeThreshold 一个rolling window内最小的请求数。如果设为20,那么当一个rolling window的时间内(比如说1个rolling window是10秒)收到19个请求,即使19个请求都失败,也不会触发circuit break。默认20
- hystrix.command.default.circuitBreaker.sleepWindowInMilliseconds 触发短路的时间值,当该值设为5000时,则当触发circuit break后的5000毫秒内都会拒绝request,也就是5000毫秒后才会关闭circuit。默认5000
- hystrix.command.default.circuitBreaker.errorThresholdPercentage错误比率阀值,如果错误率>=该值,circuit会被打开,并短路所有请求触发fallback。默认50
- hystrix.command.default.circuitBreaker.forceOpen 强制打开熔断器,如果打开这个开关,那么拒绝所有request,默认false
- hystrix.command.default.circuitBreaker.forceClosed 强制关闭熔断器 如果这个开关打开,circuit将一直关闭且忽略circuitBreaker.errorThresholdPercentage
4.Metrics相关参数
- hystrix.command.default.metrics.rollingStats.timeInMilliseconds 设置统计的时间窗口值的,毫秒值,circuit break 的打开会根据1个rolling window的统计来计算。若rolling window被设为10000毫秒,则rolling window会被分成n个buckets,每个bucket包含success,failure,timeout,rejection的次数的统计信息。默认10000
- hystrix.command.default.metrics.rollingStats.numBuckets 设置一个rolling window被划分的数量,若numBuckets=10,rolling window=10000,那么一个bucket的时间即1秒。必须符合rolling window % numberBuckets == 0。默认10
- hystrix.command.default.metrics.rollingPercentile.enabled 执行时是否enable指标的计算和跟踪,默认true
- hystrix.command.default.metrics.rollingPercentile.timeInMilliseconds 设置rolling percentile window的时间,默认60000
- hystrix.command.default.metrics.rollingPercentile.numBuckets 设置rolling percentile window的numberBuckets。逻辑同上。默认6
- hystrix.command.default.metrics.rollingPercentile.bucketSize 如果bucket size=100,window=10s,若这10s里有500次执行,只有最后100次执行会被统计到bucket里去。增加该值会增加内存开销以及排序的开销。默认100
- hystrix.command.default.metrics.healthSnapshot.intervalInMilliseconds 记录health 快照(用来统计成功和错误绿)的间隔,默认500ms
5.Request Context 相关参数
hystrix.command.default.requestCache.enabled 默认true,需要重载getCacheKey(),返回null时不缓存
hystrix.command.default.requestLog.enabled 记录日志到HystrixRequestLog,默认true
6.Collapser Properties 相关参数
hystrix.collapser.default.maxRequestsInBatch 单次批处理的最大请求数,达到该数量触发批处理,默认Integer.MAX_VALUE
hystrix.collapser.default.timerDelayInMilliseconds 触发批处理的延迟,也可以为创建批处理的时间+该值,默认10
hystrix.collapser.default.requestCache.enabled 是否对HystrixCollapser.execute() and HystrixCollapser.queue()的cache,默认true
7.ThreadPool 相关参数
线程数默认值10适用于大部分情况(有时可以设置得更小),如果需要设置得更大,那有个基本得公式可以follow:
requests per second at peak when healthy × 99th percentile latency in seconds + some breathing room
每秒最大支撑的请求数 (99%平均响应时间 + 缓存值)
比如:每秒能处理1000个请求,99%的请求响应时间是60ms,那么公式是:
1000 (0.060+0.012)
基本得原则时保持线程池尽可能小,他主要是为了释放压力,防止资源被阻塞。
当一切都是正常的时候,线程池一般仅会有1到2个线程激活来提供服务
-
- hystrix.threadpool.default.coreSize 并发执行的最大线程数,默认10
- hystrix.threadpool.default.maxQueueSize BlockingQueue的最大队列数,当设为-1,会使用SynchronousQueue,值为正时使用LinkedBlcokingQueue。该设置只会在初始化时有效,之后不能修改threadpool的queue size,除非reinitialising thread executor。默认-1。
- hystrix.threadpool.default.queueSizeRejectionThreshold 即使maxQueueSize没有达到,达到queueSizeRejectionThreshold该值后,请求也会被拒绝。因为maxQueueSize不能被动态修改,这个参数将允许我们动态设置该值。if maxQueueSize == -1,该字段将不起作用
- hystrix.threadpool.default.keepAliveTimeMinutes 如果corePoolSize和maxPoolSize设成一样(默认实现)该设置无效。如果通过plugin(https://github.com/Netflix/Hystrix/wiki/Plugins)使用自定义实现,该设置才有用,默认1.
- hystrix.threadpool.default.metrics.rollingStats.timeInMilliseconds 线程池统计指标的时间,默认10000
- hystrix.threadpool.default.metrics.rollingStats.numBuckets 将rolling window划分为n个buckets,默认10