(一)找到单链表中倒数第K个结点

本文旨在总结一下这道题的几种解法

题目描述:输入一个链表,输出该链表中倒数第K个结点

解法一:蛮力法

  •    从链表的第一个节点开始,统计当前节点后面的节点个数。如果后面的节点个数小于n-1,说明链表中的节点个数不够。如果数量大于n-1,则移动到下一个结点(作为新的当前节点),重复该过程直至当前节点后面的节点个数等于n-1.算法结束
  •   时间复杂度为O(n^2)。对于每个结点,都需要从当前节点扫描一次链表中剩余的节点
  • 空间复杂度:O(1)

解法二:散列表

  • 以下面的链表为例:

 该方法需要新建一个散列表,表中的条目是<节点的位置,节点地址>。这说明散列表中每条记录的主键是节点在链表中的位置,值是带节点的地址。

为了创建散列表,当遍历链表时,可以得到链表的长度。令M表示链表的长度,这样就将寻址链表的倒数第n个节点的问题,转化为寻找链表正数第M-n+1个节点,因为已知链表的长度,所以求解这个问题只需要返回散列表中主键为M-n+1的值即可

时间复杂度为O(m),主要是创建散列表的时间开销。空间复杂度为O(m),因为需要建立一个大小为m的散列表

解法三:

观察上面的解法,实际上就是求链表的长度。也就是说,该方法使用散列表来确定链表的长度。然而,只要从表头结点开始遍历链表,也能得到链表的长度。因此不用创建散列表同样可以得到链表的长度。得到长度后,计算M-n+1的值,然后从表头开始再遍历一次就能得到第M-n+1 个节点。

这个方法需要两次遍历:第一次得到链表长度,第二次得到要找的节点。

时间复杂度:确定链表长度的时间+从表头开始寻找第M - n+1个节点的时间开销   = O(n)

空间复杂度:O(1) 

  public ListNode findK(ListNode head,int k){
        if (head == null || k == 0){
            return null;
        }
        ListNode resultNode = null;
        ListNode headListNode = head;
        for (int i =0;i<k;++i){
            if (headListNode.next != null){
                headListNode = headListNode.next;
            }else{
                return null;
            }
        }
        resultNode = head;
        while (headListNode !=null){
            resultNode = resultNode.next;
            headListNode = headListNode.next;
        }
        return resultNode;
    }

解法四:

只用一次遍历就解决问题。

使用两个指针pNthNode和pTemp。首先,两个指针都指向链表的表头结点。仅当pTemp(沿着链表)进行了n次移动之后,pNthNode才开始移动,然后两个指针同时移动至pTemp到达表尾,此时pNthNode指向的节点就是要找的节点。

时间复杂度O(n)

空间复杂度O(1)

   public ListNode findK2(ListNode head,int NthNode){
            ListNode pTemp = head;
            ListNode pNthNode = null;
            for (int count =1;count<NthNode;count++){
                if (pTemp!=null){
                    pTemp = pTemp.next;
                }
            }
                while (pTemp!=null){
                    if (pNthNode == null){
                        pNthNode = head;
                    }else {
                        pNthNode = pNthNode.next;
                    }
                    pTemp = pTemp.next;
                }
                if (pNthNode != null){
                return pNthNode;
                }
                return null;
    }

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值