本文旨在总结一下这道题的几种解法
题目描述:输入一个链表,输出该链表中倒数第K个结点
解法一:蛮力法
- 从链表的第一个节点开始,统计当前节点后面的节点个数。如果后面的节点个数小于n-1,说明链表中的节点个数不够。如果数量大于n-1,则移动到下一个结点(作为新的当前节点),重复该过程直至当前节点后面的节点个数等于n-1.算法结束
- 时间复杂度为O(n^2)。对于每个结点,都需要从当前节点扫描一次链表中剩余的节点
- 空间复杂度:O(1)
解法二:散列表
- 以下面的链表为例:
该方法需要新建一个散列表,表中的条目是<节点的位置,节点地址>。这说明散列表中每条记录的主键是节点在链表中的位置,值是带节点的地址。
为了创建散列表,当遍历链表时,可以得到链表的长度。令M表示链表的长度,这样就将寻址链表的倒数第n个节点的问题,转化为寻找链表正数第M-n+1个节点,因为已知链表的长度,所以求解这个问题只需要返回散列表中主键为M-n+1的值即可
时间复杂度为O(m),主要是创建散列表的时间开销。空间复杂度为O(m),因为需要建立一个大小为m的散列表
解法三:
观察上面的解法,实际上就是求链表的长度。也就是说,该方法使用散列表来确定链表的长度。然而,只要从表头结点开始遍历链表,也能得到链表的长度。因此不用创建散列表同样可以得到链表的长度。得到长度后,计算M-n+1的值,然后从表头开始再遍历一次就能得到第M-n+1 个节点。
这个方法需要两次遍历:第一次得到链表长度,第二次得到要找的节点。
时间复杂度:确定链表长度的时间+从表头开始寻找第M - n+1个节点的时间开销 = O(n)
空间复杂度:O(1)
public ListNode findK(ListNode head,int k){
if (head == null || k == 0){
return null;
}
ListNode resultNode = null;
ListNode headListNode = head;
for (int i =0;i<k;++i){
if (headListNode.next != null){
headListNode = headListNode.next;
}else{
return null;
}
}
resultNode = head;
while (headListNode !=null){
resultNode = resultNode.next;
headListNode = headListNode.next;
}
return resultNode;
}
解法四:
只用一次遍历就解决问题。
使用两个指针pNthNode和pTemp。首先,两个指针都指向链表的表头结点。仅当pTemp(沿着链表)进行了n次移动之后,pNthNode才开始移动,然后两个指针同时移动至pTemp到达表尾,此时pNthNode指向的节点就是要找的节点。
时间复杂度O(n)
空间复杂度O(1)
public ListNode findK2(ListNode head,int NthNode){
ListNode pTemp = head;
ListNode pNthNode = null;
for (int count =1;count<NthNode;count++){
if (pTemp!=null){
pTemp = pTemp.next;
}
}
while (pTemp!=null){
if (pNthNode == null){
pNthNode = head;
}else {
pNthNode = pNthNode.next;
}
pTemp = pTemp.next;
}
if (pNthNode != null){
return pNthNode;
}
return null;
}