题意:
n个门,每个门有一个初始的状态,或开或锁,有m个开关,每个开关都能控制若干门的状态,题目保证每个门一定会受到两个开关的影响。问是否有可能让所有门都开。
思路:
2-SAT,对于开关来考虑,每个开关要么开要么关,两种状态true和false,设xi为true就是开关i打开,xi为false就是开关i关闭,对每个门来说,如果一开始就是打开,那么变化量就要为0,若这个门受到开关i和j的控制,那么i和j只有两种可能,要么xi==true&&yi==true,要么xi==false&&yi==false,转化成2-SAT的格式来说就是(xi || !yi) && (!xi || yi),同理,初始状态关闭的也可以这么考虑,最后直接套个板。
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXN = 1e5 + 10;
struct TwoSAT {
int n;
vector <int> G[MAXN * 2];
bool mark[MAXN * 2];
int S[MAXN * 2], c;
bool dfs(int x) {
if (mark[x ^ 1]) return false;
if (mark[x]) return true;
mark[x] = true;
S[c++] = x;
for (int i = 0; i < G[x].size(); i++)
if (!dfs(G[x][i])) return false;
return true;
}
void init(int n) {
this -> n = n;
for (int i = 0; i < n * 2; i++) G[i].clear();
memset(mark, 0, sizeof(mark));
}
void add_clause(int x, int xval, int y, int yval) {
x = x * 2 + xval;
y = y * 2 + yval;
G[x ^ 1].push_back(y);
G[y ^ 1].push_back(x);
}
bool solve() {
for (int i = 0; i < n * 2; i += 2) {
if (!mark[i] && !mark[i + 1]) {
c = 0;
if (!dfs(i)) {
while (c > 0) mark[S[--c]] = false;
if (!dfs(i + 1)) return false;
}
}
}
return true;
}
} twoSAT;
int sta[MAXN];
vector <int> swt[MAXN];
int main() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &sta[i]);
}
for (int i = 1; i <= m; i++) {
int num, x;
scanf("%d", &num);
for (int j = 1; j <= num; j++) {
scanf("%d", &x);
swt[x].push_back(i - 1);
}
}
twoSAT.init(m);
for (int i = 1; i <= n; i++) {
int x = swt[i][0], y = swt[i][1];
if (sta[i] == 1) {
twoSAT.add_clause(x, 1, y, 0);
twoSAT.add_clause(x, 0, y, 1);
}
else {
twoSAT.add_clause(x, 1, y, 1);
twoSAT.add_clause(x, 0, y, 0);
}
}
if (twoSAT.solve()) puts("YES");
else puts("NO");
return 0;
}