7-5 骨牌铺方格 (10 分)

该博客介绍了一个使用动态规划方法解决的编程问题,即如何计算在2×n的长方形方格中用1×2骨牌铺满的所有方案数。通过建立递推边界和状态转移方程,博主给出了C++代码实现,能够计算给定列数下的骨牌摆放方案总数。
摘要由CSDN通过智能技术生成

7-5 骨牌铺方格 (10 分)

题目

在2×n的一个长方形方格中,用一个1×2的骨牌铺满方格,输入n,输出铺放方案的总数。例如n=3时,骨牌的铺放方案有3种,如下图所示。
在这里插入图片描述

输入格式

测试数据有多组,处理到文件尾。每组测试输入一个整数n(0<n≤50),表示长方形方格的规格是2×n。

输出格式

对于每组测试,请输出铺放方案的总数,每组测试的输出占一行。

输入样例

3

输出样例

3

基本思路

动态规划问题:
建立数组a[60]记录每种列数下的骨牌摆放方案。
递推边界:
a[0]=0
a[1]=1
a[2]=2
状态转移方程:
a[i]=a[i-1]+a[i-2]
然后根据所给的列号序列输出对用的摆放方案即可。

代码

#include <stdio.h>
#include <iostream>
#include <stdlib.h>
using namespace std;
int n;
long long int a[60];
int main() {
    for (int i = 1; i <= 50; i++) {
        if (i == 1)
            a[i] = 1;
        else if (i == 2)
            a[i] = 2;
        else
            a[i] = a[i - 1] + a[i - 2];
    }
    while(cin>>n){
        cout<<a[n]<<endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值