离散数学 特殊关系(1)

本文探讨了离散数学中的特殊关系,包括集合相等的证明、集合划分的概念,以及全序、偏序、良序和拟序的定义。详细解释了偏序关系中的最大元、最小元、极大元和极小元,并介绍了上界、下界、上确界和下确界的概念。
摘要由CSDN通过智能技术生成
离散数学 特殊关系

想要证明两个集合相等,就证他们互相包含

集合的划分:如果一个集合A中的每一个元素属于且仅属于一个分块子集,每一个A的分块子集相交为空集,相并为A,那么就这些分块子集就是集合A的划分。
集合的全序 偏序 良序 拟序
偏序: 满足自反性、反对称性、传递性,集合内只有部分元素之间在这个关系下是可以比较的
全序: 集合内任意两个元素可比,其哈斯图为一条直线,全序必然为偏序关系
良序: 可以理解在全序的关系下,任何非空子集均有最小元,既最小值
拟序: 设R是集合A上的一个关系,如果R是反自反的和传递的,则称R是A上的一个拟序关系,拟序关系实际上是满足反自反、反对称且传递的关系,并且可以看出拟序关系与偏序关系有一定的联系——偏序是拟序的扩充,而拟序是偏序的缩减。

在这里插入图片描述
偏序的极大极小 最大最小元
最大元就是他比每一个元素大
而极大是没人比他大的元素(有几个大的值不可比)
最大元:假设a为最大元,则在集合A中,任取元素x,都有xRa.
极大元:假设a为极大元,则任取与a具有关系zdR的元素x,都有xRa.(也就是说

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值