离散数学 特殊关系
想要证明两个集合相等,就证他们互相包含
集合的划分:如果一个集合A中的每一个元素属于且仅属于一个分块子集,每一个A的分块子集相交为空集,相并为A,那么就这些分块子集就是集合A的划分。
集合的全序 偏序 良序 拟序
偏序: 满足自反性、反对称性、传递性,集合内只有部分元素之间在这个关系下是可以比较的
全序: 集合内任意两个元素可比,其哈斯图为一条直线,全序必然为偏序关系
良序: 可以理解在全序的关系下,任何非空子集均有最小元,既最小值
拟序: 设R是集合A上的一个关系,如果R是反自反的和传递的,则称R是A上的一个拟序关系,拟序关系实际上是满足反自反、反对称且传递的关系,并且可以看出拟序关系与偏序关系有一定的联系——偏序是拟序的扩充,而拟序是偏序的缩减。
偏序的极大极小 最大最小元
最大元就是他比每一个元素大
而极大是没人比他大的元素(有几个大的值不可比)
最大元:假设a为最大元,则在集合A中,任取元素x,都有xRa.
极大元:假设a为极大元,则任取与a具有关系zdR的元素x,都有xRa.(也就是说