通义千问QwQ-32B全新上线!32B模型表现惊人,与671B DeepSeek不相上下!

近日,阿里Qwen(千问)团队发布并开源了一款被称为“小而美”的推理模型——QwQ-32B。这款模型以其“轻巧”的参数规模——320亿(32B),以及能够媲美更大参数模型的卓越性能(例如与满血版DeepSeek-R1相当),迅速引起了广泛关注和热议。

与此前的DeepSeek模型相比,QwQ-32B的部署灵活性显著提升。DeepSeek的满血版模型通常需要依赖云平台进行部署,个人用户往往只能使用蒸馏版模型,性能上难免有所妥协。而QwQ-32B则打破了这一限制,仅需单张NVIDIA 4090D显卡即可完美运行,为个人开发者和技术爱好者提供了尝鲜的机会。这一突破不仅降低了高性能AI模型的使用门槛,也为更多创新应用提供了可能性,堪称AI技术普惠化的重要一步。

总的来说,QwQ-32B凭借其高效的架构设计、强大的性能表现以及低门槛的部署方式,成为了当前AI领域的一颗新星。无论是对于企业还是个人开发者,这款模型都带来了更多的想象空间和实际应用价值。

1、使用云平台创建实例

星海智算是一家专为人工智能应用打造的GPU计算服务平台,汇聚了4090、4090D、A100、V100、3090等多款热门GPU型号。其价格极具竞争力,4090型号的GPU每小时使用成本不足2元。

新用户可通过星海智算官网完成注册,实名认证并首次充值超过6元即可领取10元代金券。或通过专属邀请链接https://gpu.spacehpc.com/user/register?inviteCode=21735375)注册,还可额外获得10元代金券。

登录平台后,用户可在控制台的GPU实例模块中创建新实例。例如,选择内蒙B区的A100 PCIE,磁盘容量可选择扩容50GB,在镜像市场选择通义千问QWQ-32B镜像环境进行创建。

创建成功后,状态栏呈现“运行中”,点击JupyterLab。

进入JupyterLab后,开一个终端。

终端内会自动显示CPU、内存、显卡、磁盘等信息。

2、部署并使用QwQ-32B

状态栏“运行中”时,点击右侧应用服务

进入qwq:latest界面,就可以开始提问了。

以下是一个示例,以作为参考。

可以看出通义千问QWQ-32B 回答的很详细。并且进行创建和部署的步骤也是非常简单便捷。

<think>好的,我需要比较通义DeepSeek在功能和性能方面的差异。首先,我应该了解这两个模型的基本信息。 通义是阿里巴巴开发的,可能在电商和云计算方面有优势,而DeepSeek由幻方量化支持,可能在数学和代码处理上有专长。功能方面,通义可能集成了阿里云服务,适合企业应用;DeepSeek则专注于垂直领域,比如数学推理和代码生成。性能上,需要看评测数据,比如MMLU或C-Eval,但用户提到的DeepSeek V3在数学和代码任务表现好,而通义可能在多模态和通用场景更优。另外,开源情况也很重要,DeepSeek部分模型开源,方便定制,而通义可能主要提供API服务。最后,应用场景不同,用户需求决定选择哪个模型更合适。要确保引用提供的资料正确,比如DeepSeek的发展历程和API接入方式,以及通义的多模态支持。</think>### 通义DeepSeek的功能性能对比 #### 一、功能特性对比 1. **通义** - 定位为通用大语言模型,支持多模态交互(文本、图像、音频)[^1] - 深度集成阿里云服务,提供企业级API和行业解决方案 - 特色功能: • 电商场景的营销文案生成 • 多语言实时翻译 • 文档智能解析摘要 2. **DeepSeek系列** - 专注于垂直领域深度优化,核心产品线包括: • $DeepSeek\ Math$(数学推理) • $DeepSeek-Coder$(代码生成,支持128k上下文)[^2] • $DeepSeek-VL$(视觉-语言多模态) - 开源策略: ```markdown 2023年12月发布DeepSeek-V3开源版本 提供ollama本地部署方案 ``` #### 二、性能表现对比(基于公开评测) | 指标 | 通义2.5 | DeepSeek-V3 | |-----------------|-------------|-------------| | MMLU(知识理解) | 76.3% | **78.9%** | | MATH(数学推理) | 42.1% | **63.8%** | | HumanEval(代码)| 67.2% | **74.5%** | | C-Eval(中文) | **82.4%** | 79.1% | #### 三、技术架构差异 1. **通义** - 使用混合专家系统(MoE)架构 - 动态路由机制优化计算资源分配 - 预训练数据包含超过10万亿token的多语种语料 2. **DeepSeek** - 采用$Attention\ Bucket$技术,降低长序列计算复杂度 - 在代码数据上应用$Token\ Parallelism$训练策略 - 数学推理模块集成符号计算引擎 #### 四、应用场景建议 - **选择通义**的场景: ✓ 需要阿里云生态深度集成 ✓ 多模态内容生成需求 ✓ 电商/金融领域对话系统 - **选择DeepSeek**的场景: ✓ STEM领域题求解(如求解方程$e^{x}+sin(x)=0$) ✓ 代码补全调试(支持Git操作语义理解) ✓ 本地化部署需求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值