鲲鹏+昇腾部署通义千问 QwQ-32B(详细版)【信创国产化】

硬件

配置:2 * 920 + 4 * Atals 300I duo
系统: openEuler 22.03 lts
参考文章:https://modelers.cn/models/MindIE/QwQ-32B
感谢魔乐社区,昇腾社区,魔搭社区

前期环境准备

模型权重下载
建议modelscope下载

在下载前,请先通过如下命令安装ModelScope
pip install modelscope

下载完整模型库
modelscope download --model Qwen/QwQ-32B

在这里插入图片描述
准备好镜像
mindie:1.0.0-300I-Duo-py311-openeuler24.03-lts
我之前写的文章有下载,自己去找了哈

安装docker和docker compose
之前文章都有

部署

在300I DUO服务器部署模型时,需要修改权重目录下的config.json文件,“torch_dtype"字段改为"float16”
在这里插入图片描述

拉取镜像
docker load -i mindie:1.0.0-300I-Duo-py311-openeuler24.03-lts(下载的镜像名称与标签)
新建容器
docker run -it --privileged -u root --net=host --ipc=host \
    --name Deepseek--r1-qwq-32b \
    --device=/dev/davinci_manager \
    --device=/dev/hisi_hdc \
    --device=/dev/devmm_svm \
    --device=/dev/davinci0 \
    --device=/dev/davinci1 \
    --device=/dev/davinci2 \
    --device=/dev/davinci3 \
    --device=/dev/davinci4 \
    --device=/dev/davinci5 \
    --device=/dev/davinci6 \
    --device=/dev/davinci7 \
    -v /usr/local/Ascend/driver:/usr/local/Ascend/driver:ro \
    -v /usr/local/sbin:/usr/local/sbin:ro \
	-v /root/:/root/ \
swr.cn-south-1.myhuaweicloud.com/ascendhub/mindie:1.0.0-300I-Duo-py311-openeuler24.03-lts /bin/bash
打开配置文件
vim /usr/local/Ascend/mindie/latest/mindie-service/conf/config.json
 
更改配置文件
{
...
"ServerConfig" :
{
...
"port" : 1040, #自定义
"managementPort" : 1041, #自定义
"metricsPort" : 1042, #自定义
...
"httpsEnabled" : false,
...
},

"BackendConfig": {
...
"npuDeviceIds" : [[0,1,2,3]], //四张卡得改到7
...
"ModelDeployConfig":
{
"truncation" : false,
"ModelConfig" : [
{
...
"modelName" : "qwen2",
"modelWeightPath" : "/data/datasets/QwQ-32B",
"worldSize" : 4, //四张卡是8
...
}
]
},
}
}

在这里插入图片描述
在这里插入图片描述
给模型权重目录下的config.json权限
在这里插入图片描述

拉起服务化
cd /usr/local/Ascend/mindie/latest/mindie-service/bin
./mindieservice_daemon

在这里插入图片描述
成功

测试接口并修改回答参数

curl -H "Accept: application/json" -H "Content-type: application/json" -X POST -d '{
 "model": "DeepSeek-R1-qwq-32b",
 "messages": [{
 "role": "system",
 "content": "你好,请背诵蜀道难"
 }],
 "max_tokens": 1024
 }' 127.0.0.1:1025/v1/chat/completions

在这里插入图片描述
测试没问题,我更改一下回答参数

在这里插入图片描述
在这里插入图片描述

连接openwebui

在这里插入图片描述
这次的qwen2相比之前qwen1强太多了,回答很有深度,理解也很到位,推理确实比之前强

连接dify

在这里插入图片描述
在这里插入图片描述
没问题哈

<think>好的,我需要比较通义和DeepSeek在功能和性能方面的差异。首先,我应该了解这两个模型的基本信息。 通义是阿里巴巴开发的,可能在电商和云计算方面有优势,而DeepSeek由幻方量化支持,可能在数学和代码处理上有专长。功能方面,通义可能集成了阿里云服务,适合企业应用;DeepSeek则专注于垂直领域,比如数学推理和代码生成。性能上,需要看评测数据,比如MMLU或C-Eval,但用户提到的DeepSeek V3在数学和代码任务表现好,而通义可能在多模态和通用场景更优。另外,开源情况也很重要,DeepSeek部分模型开源,方便定制,而通义可能主要提供API服务。最后,应用场景不同,用户需求决定选择哪个模型更合适。要确保引用提供的资料正确,比如DeepSeek的发展历程和API接入方式,以及通义的多模态支持。</think>### 通义与DeepSeek的功能与性能对比 #### 一、功能特性对比 1. **通义** - 定位为通用大语言模型,支持多模态交互(文本、图像、音频)[^1] - 深度集成阿里云服务,提供企业级API和行业解决方案 - 特色功能: • 电商场景的营销文案生成 • 多语言实时翻译 • 文档智能解析与摘要 2. **DeepSeek系列** - 专注于垂直领域深度优化,核心产品线包括: • $DeepSeek\ Math$(数学推理) • $DeepSeek-Coder$(代码生成,支持128k上下文)[^2] • $DeepSeek-VL$(视觉-语言多模态) - 开源策略: ```markdown 2023年12月发布DeepSeek-V3开源本 提供ollama本地部署方案 ``` #### 二、性能表现对比(基于公开评测) | 指标 | 通义2.5 | DeepSeek-V3 | |-----------------|-------------|-------------| | MMLU(知识理解) | 76.3% | **78.9%** | | MATH(数学推理) | 42.1% | **63.8%** | | HumanEval(代码)| 67.2% | **74.5%** | | C-Eval(中文) | **82.4%** | 79.1% | #### 三、技术架构差异 1. **通义** - 使用混合专家系统(MoE)架构 - 动态路由机制优化计算资源分配 - 预训练数据包含超过10万亿token的多语种语料 2. **DeepSeek** - 采用$Attention\ Bucket$技术,降低长序列计算复杂度 - 在代码数据上应用$Token\ Parallelism$训练策略 - 数学推理模块集成符号计算引擎 #### 四、应用场景建议 - **选择通义**的场景: ✓ 需要与阿里云生态深度集成 ✓ 多模态内容生成需求 ✓ 电商/金融领域对话系统 - **选择DeepSeek**的场景: ✓ STEM领域题求解(如求解方程$e^{x}+sin(x)=0$) ✓ 代码补全与调试(支持Git操作语义理解) ✓ 本地化部署需求
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值