【卷积码基础】第一章介绍之分组码 Part1

第一章 介绍 Introduction

1.2 分组码

1.2.1 Intro

简单起见,仅研究二进制分组码。考虑一整个信息比特序列被分为若干个长度为 K K K比特的码块,这些码块被称为消息(messages),用 u = u 0 u 1 … u K − 1 \boldsymbol{u}=u_{0} u_{1} \ldots u_{K-1} u=u0u1uK1来表示。在分组码中,通常用 u \boldsymbol{u} u表示一条消息,而不是整个信息比特序列,在卷积码中也一样。

二进制 ( N , K ) (N,K) (N,K)分组码 B \mathcal{B} B M = 2 K M=2^K M=2K个二进制 N N N元组的集合, v = v 0 v 1 … v N − 1 \boldsymbol{v}=v_{0} v_{1} \ldots v_{N-1} v=v0v1vN1称为码字(codewords), N N N称为分组长度。比例
R = log ⁡ M N = K N R=\frac{\log M}{N}=\frac{K}{N} R=NlogM=NK
称为码率(code rate),单位是bits/channel use。单位为bits/s的数据传输率可以通过码率乘以每秒传输的信道符号数量得到
R t = R / T R_t=R/T Rt=R/T
如果我们以bits/channel use(bits/c.u.)为单位描述BSC信道的信道容量,可以得到BSC的信道容量为
C = 1 − h ( ϵ )  (bits/c.u.)  C=1-h(\epsilon) \quad \text { (bits/c.u.) } C=1h(ϵ) (bits/c.u.) 
根据香农信道编码理论,对于可靠通信,必须有 R ≤ C R\leq C RC,同时分组长度 N N N应充分大。
A binary symmetric channel (BSC) with (channel) encoder and decoder.
码率 R = K / N R=K/N R=K/N是码字中表示信息所必须的二进制所占的比例,剩余的部分即 1 − R = ( N − K ) / N 1-R=(N-K)/N 1R=(NK)/N表示冗余度(redundancy),这些冗余可以帮助检测或纠正错误。

假设对应于消息 u \boldsymbol{u} u的码字 v \boldsymbol{v} v通过一个BSC信道发送。信道的输出 r = r 0 r 1 … r N − 1 \boldsymbol{r}=r_{0} r_{1} \ldots r_{N-1} r=r0r1rN1称为接收序列。译码器将接收到的可能被噪声污染的 N N N元组 r \boldsymbol{r} r转换成 K K K元组 u ^ \widehat{\boldsymbol{u}} u ,称为对消息 u \boldsymbol{u} u的估计。理想情况下, u ^ \widehat{\boldsymbol{u}} u 应该为 u \boldsymbol{u} u的副本,但是信道噪声会引起一些译码错误。由于消息 u \boldsymbol{u} u和码字 v \boldsymbol{v} v存在一对一的对应关系,因此可以等价地考虑 N N N元组 v ^ \widehat{\boldsymbol{v}} v 作为译码的输出。如果一个码字 v \boldsymbol{v} v被传输,那么当且仅当 v ^ ≠ v \widehat{\boldsymbol{v}}\neq \boldsymbol{v} v =v时发生了译码错误

P E P_E PE指代分组错误概率(block or word error probability),也就是译码输出 v ^ \hat{\boldsymbol{v}} v^不同于传输码字 v \boldsymbol{v} v的概率。有
P E = ∑ r P ( v ^ ≠ v ∣ r ) P ( r ) P_{\mathrm{E}}=\sum_{\boldsymbol{r}} P(\widehat{\boldsymbol{v}} \neq \boldsymbol{v} \mid \boldsymbol{r}) P(\boldsymbol{r}) PE=rP(v =vr)P(r)
其中,接收到序列 r \boldsymbol{r} r的概率 P ( r ) P(\boldsymbol{r}) P(r)独立于译码规则,且 P ( v ^ ≠ v ∣ r ) P(\widehat{\boldsymbol{v}} \neq \boldsymbol{v} \mid \boldsymbol{r}) P(v =vr)是给定接收序列 r \boldsymbol{r} r的条件译码错误概率。因此,为了最小化 P E P_E PE,我们应该指定译码器最小化给定接收序列 r \boldsymbol{r} r下的条件译码错误概率 P ( v ^ ≠ v ∣ r ) P(\widehat{\boldsymbol{v}} \neq \boldsymbol{v} \mid \boldsymbol{r}) P(v =vr),或者等价地,最大化 P ( v ∣ r ) =  def  {P(\boldsymbol{v} | \boldsymbol{r}) \stackrel{\text { def }}{=}} P(vr)= def  P ( v ^ = v ∣ r ) {P(\widehat{\boldsymbol{v}}=\boldsymbol{v} | \boldsymbol{r})} P(v =vr)。因此,当译码器选择 u ^ \widehat{\boldsymbol{u}} u 使得对应的 v ^ = v \widehat{\boldsymbol{v}}={\boldsymbol{v}} v =v最大化 P ( v ∣ r ) {P(\boldsymbol{v} | \boldsymbol{r})} P(vr)时,分组错误概率 P E P_E PE被最小化。也就是说, v \boldsymbol{v} v是与接收序列 r \boldsymbol{r} r最相似的码字。这种译码器称为最大后验概率(maximum a posteriori probability,MAP)译码器。
通过贝叶斯准则,可以写出
P ( v ∣ r ) = P ( r ∣ v ) P ( v ) P ( r ) P(\boldsymbol{v} \mid \boldsymbol{r})=\frac{P(\boldsymbol{r} \mid \boldsymbol{v}) P(\boldsymbol{v})}{P(\boldsymbol{r})} P(vr)=P(r)P(rv)P(v)
给定码字的个数,当码字出现的可能性相等时,该编码携带最多的信息。可以合理的假设,当码字出现的可能性不等时,即当传输的信息较少时,为这种情况设计的译码器也能令人满意地工作——尽管不是最佳的。当码字出现的可能性相等时,最大化 P ( v ∣ r ) P(\boldsymbol{v} \mid \boldsymbol{r}) P(vr)等价于最大化 P ( r ∣ v ) P(\boldsymbol{r} \mid \boldsymbol{v}) P(rv)。这种作出判决 v ^ = v \widehat{\boldsymbol{v}}={\boldsymbol{v}} v =v使得 P ( r ∣ v ) P(\boldsymbol{r} \mid \boldsymbol{v}) P(rv)最大化的译码器叫做最大似然(maximum-likelihood,ML)译码器

注意,在码字的错误判决中,一些信息比特位仍然可能是正确的。在大多数应用中,比特错误概率是衡量编码好坏的更好方法。然而,它通常更难计算。像分组错误概率一样,比特错误概率不仅取决于编码规则和信道,而且还取决于编码器和信息符号。

使用分组错误概率来衡量编码的好坏是合理的,因为有以下不等式 P b ≤ P E P_b \leq P_E PbPE
这个不等式意味着当 P E P_E PE足够小的时候, P b P_b Pb也足够小。

1.2.2 汉明距离

两个 N N N元组 r \boldsymbol{r} r v \boldsymbol{v} v之间的汉明距离(Hamming Distance)是指它们对应位置不同的元素个数,表示为 d H ( r , v ) d_H(\boldsymbol{r},\boldsymbol{v}) dH(r,v)。汉明距离是编码理论中重要的一个概念,它有以下性质:

  1. d H ( x , y ) ≥ 0 d_{\mathrm{H}}(\boldsymbol{x}, \boldsymbol{y}) \geq 0 dH(x,y)0 当且仅当 x = y \boldsymbol{x}=\boldsymbol{y} x=y时取等号。(正定性)
  2. d H ( x , y ) = d H ( y , x ) d_{\mathrm{H}}(\boldsymbol{x}, \boldsymbol{y})=d_{\mathrm{H}}(\boldsymbol{y}, \boldsymbol{x}) dH(x,y)=dH(y,x)(对称性)
  3. 对于任意 z \boldsymbol{z} z d H ( x , y ) ≤ d H ( x , z ) + d H ( z , y ) d_{\mathrm{H}}(\boldsymbol{x}, \boldsymbol{y}) \leq d_{\mathrm{H}}(\boldsymbol{x}, \boldsymbol{z})+d_{\mathrm{H}}(\boldsymbol{z}, \boldsymbol{y}) dH(x,y)dH(x,z)+dH(z,y)(三角形不等式)

N N N元组 x = x 0 x 1 … x N − 1 \boldsymbol{x}=x_{0} x_{1} \ldots x_{N-1} x=x0x1xN1的**汉明重量(Hamming Weight)**是指 x \boldsymbol{x} x中非零元素的个数,表示为 w H ( x ) w_{\mathrm{H}}(\boldsymbol{x}) wH(x)

对于BSC,发送的符号以概率 ϵ \epsilon ϵ被错误地接收,其中 ϵ \epsilon ϵ也被称为信道交叉概率。因此,假设ML解码,我们必须使码字 v \boldsymbol{v} v的判决 v ^ \widehat{\boldsymbol{v}} v 能够最大化 P ( r ∣ v ) P(\boldsymbol{r} \mid \boldsymbol{v}) P(rv),也就是说,
v ^ = arg ⁡ max ⁡ v { P ( r ∣ v ) } \widehat{\boldsymbol{v}}=\arg \max _{\boldsymbol{v}}\{P(\boldsymbol{r} \mid \boldsymbol{v})\} v =argvmax{P(rv)}
其中,
P ( r ∣ v ) = ϵ d H ( r , v ) ( 1 − ϵ ) N − d H ( r , v ) = ( 1 − ϵ ) N ( ϵ 1 − ϵ ) d H ( r , v ) P(\boldsymbol{r} \mid \boldsymbol{v})=\epsilon^{d_{\mathrm{H}}(\boldsymbol{r}, \boldsymbol{v})}(1-\epsilon)^{N-d_{\mathrm{H}}(\boldsymbol{r}, \boldsymbol{v})}=(1-\epsilon)^{N}\left(\frac{\epsilon}{1-\epsilon}\right)^{d_{\mathrm{H}}(\boldsymbol{r}, \boldsymbol{v})} P(rv)=ϵdH(r,v)(1ϵ)NdH(r,v)=(1ϵ)N(1ϵϵ)dH(r,v)
由于对于BSC, 0 < ϵ < 1 / 2 0<\epsilon<1 / 2 0<ϵ<1/2,有
0 < ϵ 1 − ϵ < 1 0<\frac{\epsilon}{1-\epsilon}<1 0<1ϵϵ<1
因此,最大化 P ( r ∣ v ) P(\boldsymbol{r} \mid \boldsymbol{v}) P(rv)等价于最小化 d H ( r , v ) d_H(\boldsymbol{r},\boldsymbol{v}) dH(r,v),此时ML译码等价于最小(汉明)距离(minimum (Hamming) distance ,MD)译码器

汉明距离和汉明重量的关系:
在向量空间 F 2 N \mathbb{F}_{2}^{N} F2N中,有
d H ( x , y ) = w H ( x − y ) = w H ( x + y ) d_{\mathrm{H}}(\boldsymbol{x}, \boldsymbol{y})=w_{\mathrm{H}}(\boldsymbol{x}-\boldsymbol{y})=w_{\mathrm{H}}(\boldsymbol{x}+\boldsymbol{y}) dH(x,y)=wH(xy)=wH(x+y)
对于编码 B \mathcal{B} B的最小距离 d min d_\text{min} dmin被定义为 d H ( v , v ′ ) d_{\mathrm{H}}\left(\boldsymbol{v}, \boldsymbol{v}^{\prime}\right) dH(v,v)的最小值,其中 v \boldsymbol{v} v v ′ \boldsymbol{v}^{\prime} v都在 B \mathcal{B} B中且 v ≠ v ′ \boldsymbol{v}\neq \boldsymbol{v}^{\prime} v=v

参考文献:
[1] Johannesson R, Zigangirov K S. Fundamentals of Convolutional Coding[B]. P8-12.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值