vnet(Github)学习总结

这篇博客总结了使用Tensorflow的Dataset加载数据和进行数据增强的方法,特别是针对V-Net模型的训练。介绍了Normalization和RandomCrop技术,并探讨了在医学图像处理中数据增强的重要性。在训练阶段,作者提到了PReLU激活函数的应用。
摘要由CSDN通过智能技术生成

Tensorflow可以使用feed_dict的方式输入数据,但是效率比较低。Tensorflow提供了一个内置函数可以利用输入管道的方式输入数据。

tf.data.Dataset()接收numpy和tensor类型的数据


Dataset

Dataset()可以接收多个输入,当数据由特征和标签组成时,使用起来及其方便。

image_paths = ['特征路径']
label_paths = ['标签路径']
dataset = tf.data.Dataset.from_tensor_slices((image_paths, label_paths))

结果:

>>b'('特征路径', '标签路径')'

当输入为string时,使用form_tensor_slices()得到的结果是bytes类型,可能需要decode('utf-8')


除了加载数据方便外,dataset还可以做数据转换。
dataset.map()接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset

dataset = tf.data.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值