Tensorflow实现ResNet V2


通常认为神经网络的深度对性能非常重要,但是网络越深其训练难度越大。Highway Network的目标就是解决极深的神经网络难以训练的问题。Highway Network相当于修改了每一层的激活函数,即允许保留一定比例的原始输入,前一层的信息有一定比例可以不经过矩阵乘法和非线性变换,直接传输到下一层,但是需要学习如何控制网络中的信息流,即学习原始信息的保留比例。

ResNet和Highway Network非常类似,允许原始输入信息直接传输到后面的层中。

在不断加深网络深度时,会出现几个问题:

  1. Degradation问题,准确率会先上升达到饱和后,再持续增加深度会导致准确率下降。
  2. 同时可能会存在梯度弥散问题

假定某段神经网络的输入是x,期望输出是H(x),如果直接把输入传输到输出作为初始结果,那么此时学习的目标就是H(x) - x,这就是ResNet的残差学习
ResNet有很多旁路的支线将输入直接连接连接到后面的层,使得后面的层可以直接学习残差,这种结构也被称为shortcutskip connection

7239122-0e7cb0261d59084d.png
图1 三层残差单元

图中 preact是输入,左边支路是一个将输入直接传输到输出层的 shorcut通路,右边是卷积层,从图中可以看出输入的维度是 32x56x56x64shorcut的维度是 32x56x56x256,卷积层的输出也是 32x56x56x256,保持了维度一样。
7239122-8568e5ed962fb60b.png
图2 shortcut

图2是图1中的shortcut节点的展开,此处使用了1x1的卷积核,改变了输出的通道数,使得最终的维度一样。下图3中的维度信息就一样,所以就没有进行1x1的卷积操作。
7239122-5b5f091781b08b8d.png
图3

7239122-7fad4724b4642ebc.png
图4 图1中的conv3的展开

图4就是一个普通的卷积层,连线上标注了维度


7239122-58d54eefda57e03c.png
图5 152层的ResNet

图5中的红框中的一个unit_x单元展开之后就是一个图1的样子。


下面是使用tensorflow的实现代码:

# 定义ResNet基本模块组的数据结构
class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])):
    'A named tuple describing a ResNet block'

# 降采样
def subsample(inputs, factor, scope=None):
    if factor == 1:
        return inputs
    else:
        return slim.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)

# 卷积层
def conv2d_same(inputs, num_outputs, kernel_size, stride, scope=None):
    if stride == 1:
        return slim.conv2d(inputs, num_outputs, kernel_size, stride=1, padding='SAME', scope=scope)
    else:
        pad_total = kernel_size - 1
        pad_beg = pad_total // 2
        pad_end = pad_total - pad_beg
        inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
                                 [pad_beg, pad_end], [0, 0]])
        return slim.conv2d(inputs, num_outputs, kernel_size, stride=stride, padding='VALID', scope=scope)

# 堆叠Block
@slim.add_arg_scope
def stack_arg_dense(net, blocks, outputs_collections=None):

    for block in blocks:
        with tf.variable_scope(block.scope, 'block', [net]) as sc:
            for i, unit in enumerate(block.args):
                with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                    unit_depth, unit_depth_bottleneck, unit_stride = unit
                    net = block.unit_fn(net,
                                        depth=unit_depth,
                                        depth_bottleneck=unit_depth_bottleneck,
                                        stride=unit_stride)

            net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)

    return net

# 定义ResNet通用的arg_scope
def resnet_arg_scope(is_training=True,
                    weight_decay=0.0001,
                    batch_norm_decay=0.997,
                    batch_norm_epsilon=1e-5,
                    batch_norm_scale=True):

    batch_norm_params = {
        'is_training': is_training,
        'decay': batch_norm_decay,
        'epsilon': batch_norm_scale,
        'scale': batch_norm_scale,
        'updates_collections': tf.GraphKeys.UPDATE_OPS
    }

    with slim.arg_scope([slim.conv2d],
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        weights_initializer=slim.variance_scaling_initializer(),
                        activation_fn=tf.nn.relu,
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params):
        with slim.arg_scope([slim.batch_norm], **batch_norm_params):
            with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
                return arg_sc

# 核心的bottleneck残差学习单元
@slim.add_arg_scope
def bottleneck(inputs, depth, depth_bottleneck, stride, outputs_collections=None, scope=None):
    with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')

        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                                   normalizer_fn=None, activation_fn=None, scope='shortcut')

        residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
        residual = conv2d_same(residual, depth_bottleneck, 3, stride, scope='conv2')
        residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                               normalizer_fn=None, activation_fn=None, scope='conv3')

        output = shortcut + residual

        return slim.utils.collect_named_outputs(outputs_collections, sc.name, output)

# 生成ResNet的主函数
def resnet_v2(inputs, blocks, num_classes=None, global_pool=True, include_root_block=True, reuse=None, scope=None):

    with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
        end_point_collections = sc.original_name_scope + 'end_points'
        with slim.arg_scope([slim.conv2d, bottleneck, stack_arg_dense], outputs_collections=end_point_collections):
            net = inputs
            if include_root_block:   # 是否添加最前面的7x7卷积和最大池化层
                with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer_fn=None):
                    net = conv2d_same(net, 64, 7, stride=2, scope='conv1')
                net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

            net = stack_arg_dense(net, blocks)
            net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm')

            if global_pool:   # 是否使用最后一层全局平均池化
                net = tf.reduce_mean(net, [1, 1], name='pool5', keep_dims=True)

            if num_classes is not None:
                net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits')

            end_points = slim.utils.convert_collection_to_dict(end_point_collections)
            if num_classes is not None:
                end_points['predictions'] = slim.softmax(net, scope='predictions')

            return net, end_points
# 152层的ResNet
def resnet_v2_152(inputs, num_classes=None, global_pool=None, reuse=None, scope='resnet_v2_152'):
    blocks = [Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
              Block('block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]),
              Block('block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
              Block('block4', bottleneck, [(1024, 512, 1)] * 3)]
    return resnet_v2(inputs, blocks, num_classes, global_pool, include_root_block=True, reuse=reuse, scope=scope)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值