视觉Transformer (一) Transformer Tracking

文章来源

paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Transformer_Tracking_CVPR_2021_paper.html
code:
https://github.com/chenxin-dlut/TransT

Motivation

之前的跟踪大部分都是采用correlation(互相关)融合方法计算模板和搜索帧之间的相似性,然而这种融合会丢失语义信息从而限于局部最优。
从而,作者提出了更好的融合方式,即源于Transformer的attentiion机制。

方法

在这里插入图片描述
作者设计的架构由3部分组成:backbone feature extractor, feature fusion, prediction head.
(一)backbone:
作者采用了resnet50作为backbone,但是在传统的resnet50上,去除了最后一个block5,将block4作为最后一个输出特征。此外,block4的下采样操作的卷积stride从原来的2变为了1。从而可以得到模板特征fzf_zfz和搜索特征fzf_zfz
fx∈Hx∗Hx∗1024f_x \in H_x*H_x*1024fxHxHx1024
fz∈Hz∗Hz∗1024f_z \in H_z*H_z*1024f

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值