文章来源
paper: https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Transformer_Tracking_CVPR_2021_paper.html
code:
https://github.com/chenxin-dlut/TransT
Motivation
之前的跟踪大部分都是采用correlation(互相关)融合方法计算模板和搜索帧之间的相似性,然而这种融合会丢失语义信息从而限于局部最优。
从而,作者提出了更好的融合方式,即源于Transformer的attentiion机制。
方法

作者设计的架构由3部分组成:backbone feature extractor, feature fusion, prediction head.
(一)backbone:
作者采用了resnet50作为backbone,但是在传统的resnet50上,去除了最后一个block5,将block4作为最后一个输出特征。此外,block4的下采样操作的卷积stride从原来的2变为了1。从而可以得到模板特征fzf_zfz和搜索特征fzf_zfz:
fx∈Hx∗Hx∗1024f_x \in H_x*H_x*1024fx∈Hx∗Hx∗1024
fz∈Hz∗Hz∗1024f_z \in H_z*H_z*1024f

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



