举例说明
题目如下:
一,构建三个层次
目标层:你的目的,例如你旅游的地方,你早餐想吃的东西
指标层:你需要考虑对比的因素(可以理解成性价比),例如你旅游的地方要考虑景色,吃住,价格等等
方案层:具体的实体,例如你想去南京,桂林,三亚这三个地方,但只能选择一个
二,(一般是专家)打分构建目标层和指标层的判断矩阵
判断影响你决定去哪个地方旅游的指标的重要性,判断的方法是指标两两对比打分填入判断矩阵中,例如在你的心目中(或专家说)人文比景色稍微重要,则在判断矩阵的中填3,最终构建的判断矩阵是一个正互反矩阵。
ps:正互反矩阵定义:
三,一致性检验
若正互反矩阵满足: 则称为一致性矩阵。
一致矩阵有一个特征值为 n(n阶一致矩阵的特征值n一般等于指标的个数or行数or列数),其余特征值均为 0。
假定n阶正互反矩阵最大特征值为,求法如下:
对判断矩阵每一列加和,然后这一列的每个值除以和数填入矩阵(这句话所述就是按列归一化)。
然后对判断矩阵每一行进行算术平均得到的值是。
。
通过最大特征值可以快速求出对应的特征向量,后文特征值法求权重时需要使用。
n阶正互反矩阵当且仅当最大特征值时为一致矩阵。当正互反矩阵非一致时,其
。若正互反矩阵越不一致,最大特征值与n就相差越大。
我们进行构造判断矩阵大多是正互反矩阵,难免会出现矛盾,即不容易构造出一致性矩阵,但是我们可以向一致性矩阵靠拢,只要这个差距(CR)不超过一个范围(0.1),那么这个判断矩阵也是可以使用的。这个判断差距的过程叫做 一致性检验。
步骤:
第一步:计算一致性指标CI
第二步:查找n对应的平均随机一致性指标RI
RI可以直接查此表使用,在后续步骤中会使用RI。在实际运用中,若n大于10,可以考虑建立二级指标体系,或者使用模糊综合评价模型。
第三步:计算一致性比例CR
若CR<0.1,则可以认为我们构建的判断矩阵的一致性可以接受,否则修改判断矩阵
四,根据判断矩阵计算每个指标的权重
有三个方法分别是算数平均法,几何平均法,特征值法
1.算数平均法(和积法)
对判断矩阵每一列加和,然后这一列的每个值除以和数填入矩阵(这句话所述就是列归一化)。然后对判断矩阵每一行进行算术平均得到的值就是对应指标的权重。
2.几何平均法(方根法)
对判断矩阵每一行的值相乘得到行乘积,开四次方。然后对开四次方的值进行归一化处理即可得到权重。
3.特征值法
前文已经求出和其特征向量,对特征向量进行归一化即可得到权重
在实际建模中建议综合三种方法求得的权重求平均得到一个综合的权重向量更具有说服力。
五,(一般是专家)打分构建指标层和方案层的判断矩阵,一致性检验,求方案的权重
方案之间的比较量化标准和上文一样。一致性检验和求方案的权重重复上文中的第三,四部分。
六,计算各方案的得分
下图是各指标和方案的权重矩阵
对每个方案进行加权平均
比如,南京的得分=
比较各方案得分高低,选出得分最高的方案。