凸优化第二章part one
正文开始辽,全英真是看不下了呜呜,速度慢吃不消🐾
这一章介绍了一些数学定义,对理解问题找本质有帮助,感觉对自己原来的数学概念进行一次推广统一
- 仿射集
这个还是比较好理解的
仿射的维数:
- 子空间
子空间理解起来抽象了一些,这一段定义反复看了好几遍,其实理解子空间的重点在理解偏移x0,理解好了子空间的概念也就很自然记住了
- 凸集
个人认为凸集这种可以由几何形状联想记忆的定义也很好理解,书中说道仿射集都是凸集毋庸置疑,对比两者的定义,可以看到θ的取值范围不同,当θ范围为R时仿射集的定义成立,那么θ为0到1时仿射集的定义显然也成立。
- 凸包
关于凸包的求法已经有很完备的理论了,最近算法课有学到,就不展开描述了。 - 锥
锥的定义可以和高中向量学习的向量基对比起来学习,我觉得二者有明显的不同和相同之处。
测验一下概念是否理清楚了吧!!🍕
-
重要例子之超平面和半平面
看到这里我脑海里开始浮现svm分类器的原理推导了,超平面和半平面的概念还是很好理解的,可以看成是存在高维空间里的不可以直接画图体现出来的一个平面,但在自己脑海里想象一下还是能体会这个意思的。
原书里还列举了Euclid球和椭球,范数球和范数锥和多面体的定义,基本上是在原有五个基础定义上的具体化。其中多面体中的单纯形值得一提,在后续章节会用到:
基础定义的了解先告一段落,接下来要探索简单的定理推导了,这些定理也是最基本的,可以说是后续算法的敲门砖了。