凸优化第二章part one(小白学凸优化convex optimization)

凸优化第二章part one

正文开始辽,全英真是看不下了呜呜,速度慢吃不消🐾
这一章介绍了一些数学定义,对理解问题找本质有帮助,感觉对自己原来的数学概念进行一次推广统一

  1. 仿射集
    在这里插入图片描述
    这个还是比较好理解的

仿射的维数:
在这里插入图片描述

  1. 子空间
    子空间理解起来抽象了一些,这一段定义反复看了好几遍,其实理解子空间的重点在理解偏移x0,理解好了子空间的概念也就很自然记住了
    在这里插入图片描述
  2. 凸集

在这里插入图片描述
在这里插入图片描述
个人认为凸集这种可以由几何形状联想记忆的定义也很好理解,书中说道仿射集都是凸集毋庸置疑,对比两者的定义,可以看到θ的取值范围不同,当θ范围为R时仿射集的定义成立,那么θ为0到1时仿射集的定义显然也成立。

  1. 凸包
    在这里插入图片描述
    关于凸包的求法已经有很完备的理论了,最近算法课有学到,就不展开描述了。

  2. 在这里插入图片描述
    锥的定义可以和高中向量学习的向量基对比起来学习,我觉得二者有明显的不同和相同之处。

测验一下概念是否理清楚了吧!!🍕
在这里插入图片描述

  1. 重要例子之超平面和半平面
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    看到这里我脑海里开始浮现svm分类器的原理推导了,超平面和半平面的概念还是很好理解的,可以看成是存在高维空间里的不可以直接画图体现出来的一个平面,但在自己脑海里想象一下还是能体会这个意思的。

原书里还列举了Euclid球和椭球,范数球和范数锥和多面体的定义,基本上是在原有五个基础定义上的具体化。其中多面体中的单纯形值得一提,在后续章节会用到:

在这里插入图片描述
基础定义的了解先告一段落,接下来要探索简单的定理推导了,这些定理也是最基本的,可以说是后续算法的敲门砖了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值