EEMD (Ensemble Empirical Mode Decomposition)

EEMD (Ensemble Empirical Mode Decomposition) 是一种自适应的、数据驱动的信号分析方法,用于分解非线性、非稳态的数据序列。EEMD 是 Huang 等人于 1998 年首先提出的经验模态分解 (Empirical Mode Decomposition, EMD) 的改进版本。

EEMD 主要由以下几个步骤组成:

  1. 添加白噪声: 在原始数据中加入一组不同幅度的白噪声。

  2. 使用 EMD 方法: 对每一组加入噪声的数据应用 EMD,得到一系列的固有模态函数 (Intrinsic Mode Functions, IMFs)。

  3. 求平均: 对所有噪声样本得到的相应 IMF 进行平均,以得到最终的 IMF。

  4. 迭代过程: 以上过程可以迭代多次,以提高结果的稳定性。

EEMD 的优势在于它能够更有效地分解噪声干扰下的信号,并且对于模态混叠问题也有更好的表现。它已被广泛应用于各种信号处理、时间序列分析以及工程和科学问题中。

需要注意的是,与任何其他信号处理方法一样,EEMD 也有其局限性和适用范围,因此在应用它之前,需要确保它适用于你的特定问题和数据集。

以下是计算原始信号减去EEMD、SSA和LS季节模型所产生的残差的频谱指数的matlab代码: ```matlab % 假设原始信号为signal,采样率为fs % EEMD分解 imf = ceemdan(signal); % 进行CEEMDAN分解,得到各个本征模态函数imf residual = signal - sum(imf, 2); % 计算残差 % 计算频谱指数 [pxx, f] = pwelch(residual, [], [], [], fs); % 计算残差的功率谱密度pxx和对应频率f fi = find(f > 0 & f < 0.1); % 选择感兴趣的频率区间 SI_EEMD = trapz(pxx(fi)) / trapz(pxx); % 计算频谱指数SI_EEMD % SSA分解 L = 100; % 选择时间窗口长度 K = floor(length(signal) / L); % 计算分解后的子序列数 X = zeros(L, K); for i = 1:K X(:, i) = signal((i-1)*L+1:i*L); end imf = ssa(X); % 进行SSA分解,得到各个本征模态函数imf residual = signal - sum(imf, 2); % 计算残差 % 计算频谱指数 [pxx, f] = pwelch(residual, [], [], [], fs); % 计算残差的功率谱密度pxx和对应频率f fi = find(f > 0 & f < 0.1); % 选择感兴趣的频率区间 SI_SSA = trapz(pxx(fi)) / trapz(pxx); % 计算频谱指数SI_SSA % LS季节模型 t = (1:length(signal))'; % 构造时间序列t X = [ones(length(signal), 1), sin(2*pi*t/365), cos(2*pi*t/365)]; % 构造基函数矩阵X beta = X \ signal; % 进行最小二乘拟合,得到拟合系数beta residual = signal - X*beta; % 计算残差 % 计算频谱指数 [pxx, f] = pwelch(residual, [], [], [], fs); % 计算残差的功率谱密度pxx和对应频率f fi = find(f > 0 & f < 0.1); % 选择感兴趣的频率区间 SI_LS = trapz(pxx(fi)) / trapz(pxx); % 计算频谱指数SI_LS ``` 其中,ceemdan和ssa是EEMD和SSA的matlab函数,可在MATLAB File Exchange中下载。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值