安装stable-diffusion的错误 xformers 安装解决

文章讲述了xformers是SD的加速模块,虽然不是必须,但能提升图片生成速度。在安装SD后发现缺少xformers模块,可以通过pip单独安装,需要注意版本与torch的兼容性,错误的版本可能会破坏环境。对于显存有限的设备,xformers的加速效果可能不明显。文章提供了卸载重装torch和xformers的步骤,以及如何修改webui-user.bat参数使xformers生效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、xformers是SD的加速模块,没有他可以继续运行,可以正常生成图片。只是xformers可以帮助提升图片的生成速度。

2、安装完SD后,启动出现xformers未安装的情况

No module 'xformers'. Proceeding without it.

可以单独pip 安装xformers模块,命令:

pip install xformer

3、注意这里的版本,如果安装的版本不对,会卸载你的原安装正常的pytorch版本,导致你的环境变得无法使用。比如我安装的torch-2.0.1+cu118,对应的是xformer0.0.19等都是错误的,导致需要重新卸载,重新安装。

torch-2.0.1+cu118,对应的是xformer0.0.20

可以直接使用 pip install xformer 或pip install xformer-0.0.20

4、如果出现因安装xformers而卸载已经安装好的torch,可以先直接卸载torch和xformers,再运行webui-user.bat 脚本(直接运行webui-user.bat,不要带参数)重新安装torch

   1)卸载命令:pip uninstall torch xformers

   2)重新安装torch 命令:.\webui-user.bat,

   3)再重新安装pip install xformer-0.0.20

5、修改webui-user.bat的参数,使其xformers参数启动生效:

set COMMANDLINE_ARGS=--xformers

xformers的git地址如下,网上有其他方式根据源码安装的,也可以作为参考:

https://github.com/facebookresearch/xformers

6、针对显存不高的电脑,xformers没什么明显的提升,所以只是自己的电脑学学玩玩,不安装xformers也无所谓。比如我的显存4G,一张图片70秒左右,安不安装xformers都还是70秒左右,没有明显的差别。

<think>嗯,用户问的是如何在50系显卡上安装配置Stable Diffusion。首先,我得确认一下50系显卡的具体型号,比如NVIDIA的RTX 50系列可能还没发布,但用户可能指的是AMD的某个50系列?不过根据提供的引用内容,用户之前提到的是AMD显卡,比如Radeon RX 500系列?或者是NVIDIA的旧款比如GTX 50系列?不过现在常见的可能是AMD的RX 500系列,比如RX 580之类的。 首先,根据引用1和引用2,用户之前有在AMD显卡(比如核显)上安装Stable Diffusion的经验,而现在想换到50系显卡。需要明确50系显卡是NVIDIA还是AMD的,但根据常见情况,可能用户指的是NVIDIA的GTX 50系列,比如GTX 1050之类的,或者AMD的RX 500系列。 如果是AMD显卡的话,安装步骤可能类似引用2中的AMD核显安装方式,需要配置ROCm或者使用DirectML。但如果是NVIDIA显卡,则需要安装CUDA和cuDNN。但用户提到的50系可能属于较旧的型号,比如GTX 1050,支持CUDA但可能兼容性需要注意。 接下来,我需要查看用户提供的引用内容是否有相关指导。引用1是CSDN上关于AMD显卡安装的教程,引用2是AMD核显的安装步骤。用户现在想换到50系显卡,可能属于不同的GPU品牌,因此可能需要不同的配置方法。 假设用户指的是NVIDIA的50系列显卡,比如GTX 1050,那么需要确认该显卡是否支持CUDA。GTX 1050支持CUDA,但可能需要安装特定版本的驱动和CUDA工具包。然后,在安装Stable Diffusion时,需要配置使用CUDA的版本,比如通过PyTorch的CUDA支持。 但用户可能混淆了显卡型号,或者有拼写错误。需要进一步确认,但根据现有信息,可能需要指导用户安装适合他们显卡的驱动和框架支持。例如,如果是NVIDIA显卡,安装CUDA;如果是AMD,使用ROCm或DirectML。 根据引用2中的步骤,AMD核显安装需要配置Python环境、安装依赖库如onnxruntime-directml,并修改启动参数。对于不同的AMD显卡,可能需要类似的步骤,但如果是较新的AMD显卡,可能需要使用ROCm支持。 因此,回答需要分情况讨论:如果是NVIDIA显卡,则安装CUDA相关;如果是AMD显卡,则使用DirectML或ROCm。同时,需要提醒用户检查显卡型号和兼容性,安装正确的驱动,配置虚拟环境,调整启动参数等步骤。 此外,用户可能遇到问题,比如显存不足或兼容性错误,需要提供常见问题解决方法,比如降低批次大小,使用--medvram参数等。最后,建议用户参考社区资源或具体教程,根据显卡型号搜索更详细的指南。</think>根据现有资料和AMD显卡配置经验,在50系显卡(以AMD Radeon RX 500系列为例)安装Stable Diffusion的步骤如下: ### 一、环境准备 1. **安装Python 3.10.6** 需特别注意版本兼容性,建议通过[Python官网](https://www.python.org/downloads/)下载并勾选"Add to PATH"选项[^2] 2. **更新显卡驱动** 打开AMD Radeon Software控制面板,检查并安装最新驱动,确保支持DirectML或ROCm框架 ### 二、项目配置 ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui cd stable-diffusion-webui python -m venv venv source venv/bin/activate # Linux/macOS # 或 venv\Scripts\activate # Windows ``` ### 三、关键依赖安装 ```python # requirements.txt中添加特殊依赖 pip install torch-directml ``` 需修改`webui-user.bat`启动参数: ```bat set COMMANDLINE_ARGS=--use-directml --precision full --no-half ``` ### 四、模型部署 1. 下载标准模型(如v1-5-pruned-emaonly.ckpt)至`models/Stable-diffusion`目录 2. 推荐使用显存优化参数: ```bat set COMMANDLINE_ARGS=--medvram --opt-sub-quad-attention ``` ### 常见问题处理 | 问题现象 | 解决方案 | |---------|---------| | `Torch not compiled with CUDA` | 确认使用`torch-directml`而非CUDA版本 | | 显存不足 | 添加`--lowvram`参数或减小图像尺寸 | | 黑图输出 | 检查模型hash值,更新xformers库 |
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值