poj 2983 差分约束Is the Information Reliable?

一天一道题。。。今天写解题报告,明天回顾。。。

题目链接:http://poj.org/problem?id=2983

第一道差分约束题啊。。。

题意:有N个车站,给出一些点的精确信息和模糊信息,精确信息给出两点的位置和距离,模糊信息给出两点的位置,但距离大于等于一。试确定是否所有的信息满足条件

对于精确信息,可以得出两个差分条件,b-a = c;可以化为b <=a+c && a <= b-c;

对于模糊信息,只能得出一个差分条件,可以化为 b - a <= 1;所以a <= b-1;说明b到a有一条长度为-1的边

以上不等式都是在输入时处理的。。。

这就化成了:差分约束形式(题意表述参考别人的)。。。

Bellman_ford算法参考我博客另一篇文章:http://blog.csdn.net/bill_ming/article/details/7628435

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
using namespace std;
const int M = 200010; //开100010竟然RE,一气之下开大点
const int INF = 999999;
struct Node
{
    int u;
    int v;
    int w;
} p[M];
int dis[M];
int n,m;
int num;
bool Bellman_ford()  //普通的Bellman_ford算法
{
    for(int i = 1; i <= n; i++)
        dis[i] = INF;
    bool flag ;
    for(int i = 1; i <= n; i++)
    {
        flag = false;
        for(int j = 1; j <= num; j++)
        {
            if(dis[p[j].v] > dis[p[j].u] + p[j].w)
            {
                dis[p[j].v] = dis[p[j].u] + p[j].w;
                flag = true;
            }
        }
        if( !flag )
            break;
    }
    for(int j = 1; j <= num; j++)
        if(dis[p[j].v] > dis[p[j].u] + p[j].w)
            return true;
    return false;

}
int main()
{

    char ch;
    int a,b,c;
    while(cin >> n >> m)
    {
        num = 0;
        memset(dis,0,sizeof(dis));
        for(int i = 1; i <= m; i++)
        {
            cin >> ch;
            if(ch == 'P')
            {
                ++num;
                cin >> a >> b >> c;   //根据不等式做输入处理
                p[num].u = a;
                p[num].v = b;
                p[num].w = c;
                ++num;
                p[num].u = b;
                p[num].v = a;
                p[num].w = -c;

            }
            else
            {
                ++num;
                cin >> a>>b;
                p[num].u = b;
                p[num].v = a;
                p[num].w = -1;
            }
        }
        if( Bellman_ford() )
        {
            cout << "Unreliable"<<endl;
        }
        else
        {
            cout << "Reliable"<<endl;
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值