[POJ2299] Ultra-QuickSort - 逆序对


题目描述

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.


输入格式

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.


输出格式

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.


样例数据

样例输入

5
9
1
0
5
4
3
1
2
3
0

样例输出

6
0


题目分析

求逆序对。
一个一个插入,统计比他大的。
我为了方便,倒序插入统计小的。
a[]太大,需要离散化。
注意开long long


源代码

#include<algorithm>
#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdlib>
#include<vector>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
inline const int Get_Int() {
    int num=0,bj=1;
    char x=getchar();
    while(x<'0'||x>'9') {
        if(x=='-')bj=-1;
        x=getchar();
    }
    while(x>='0'&&x<='9') {
        num=num*10+x-'0';
        x=getchar();
    }
    return num*bj;
}
const int maxn=500005;
struct BIT { //树状数组
    long long n,c[maxn];
    inline int Lowbit(int x) { //低位操作
        return x&(-x);
    }
    void init(int n) {
        this->n=n;
        memset(c,0,sizeof(c));
    }
    void add(int x,int v) {
        for(int i=x; i<=n; i+=Lowbit(i))c[i]+=v;
    }
    long long sum(int x) { //求出1~s的区间和
        long long s=0;
        for(int i=x; i; i-=Lowbit(i))s+=c[i];
        return s;
    }
} bit;
map<long long,long long>M;
map<long long,long long>::iterator it;
long long n,a[500005],b[500005];
void Discretization() { //a是待离散数组 b是离散后数组
    M.clear();
    memset(b,0,sizeof(b));
    for(int i=1; i<=n; i++)M[a[i]]=1; 
    int i=1;
    for(it=M.begin(); it!=M.end(); it++,i++)it->second=i;
    for(int i=1; i<=n; i++)b[i]=M[a[i]];
}
long long ans=0;
int main() {
    while(true) {
        n=Get_Int();
        if(n==0)break;
        ans=0;
        bit.init(n);
        for(int i=1; i<=n; i++)a[i]=Get_Int();
        Discretization();
        for(int i=n; i>=1; i--) {
            bit.add(b[i],1);
            ans+=bit.sum(b[i]-1);
        }
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值