「Luogu P2257」YY的GCD「莫比乌斯反演」

题目传送门

题意

ni=1mj=1[gcd(i,j)isprime] ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) i s p r i m e ]

题解

不妨设 nm n ≤ m ,推一下式子

i=1nj=1m[gcd(i,j)isprime] ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) i s p r i m e ]

=p=1ni=1nj=1m[gcd(i,j)=p] = ∑ p = 1 n ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = p ]

=p=1ni=1,p|inj=1,p|jm[gcd(ip,jp)=1] = ∑ p = 1 n ∑ i = 1 , p | i n ∑ j = 1 , p | j m [ g c d ( i p , j p ) = 1 ]

=p=1ni=1npj=1mp[gcd(i,j)=1] = ∑ p = 1 n ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ [ g c d ( i ′ , j ′ ) = 1 ]

=p=1ni=1npj=1mpe(gcd(i,j)) = ∑ p = 1 n ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ e ( g c d ( i ′ , j ′ ) )

=p=1ni=1npj=1mpd|gcd(i,j)μ(d) = ∑ p = 1 n ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ ∑ d | g c d ( i ′ , j ′ ) μ ( d )

=p=1nd=1npμ(d)npdmpd = ∑ p = 1 n ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ n p d ⌋ ⌊ m p d ⌋

于是枚举 p p ,线性筛求出莫比乌斯函数的前缀和,然后整除分块做

#include <cstring>
#include <cstdio>

typedef long long LL;

const int MAXN = 1e7 + 10;

bool tag[MAXN];
int pr[MAXN], tot, n, m;
int mu[MAXN], mus[MAXN];

void init(int n) {
    memset(tag, 1, sizeof tag);
    tag[1] = false;
    mu[1] = mus[1] = 1;
    for(int i = 2; i <= n; i ++) {
        if(tag[i]) {
            pr[++ tot] = i;
            mu[i] = -1;
        }
        for(int j = 1; j <= tot && pr[j] * (LL)i <= n; j ++) {
            tag[i * pr[j]] = false;
            if(i % pr[j] == 0) {
                mu[i * pr[j]] = 0;
                break ;
            }
            mu[i * pr[j]] = - mu[i];
        }
        mus[i] = mus[i - 1] + mu[i];
    }
}

LL calc(int r1, int r2) {
    LL ans = 0;
    int r = (r1 < r2 ? r1 : r2);
    for(int i = 1, j; i <= r; i = j + 1) {
        j = r1 / (r1 / i);
        if(j > r2 / (r2 / i)) j = r2 / (r2 / i);
        ans += (mus[j] - mus[i-1]) * 1ll * (r1 / i) * (r2 / i);
    }
    return ans;
}

int main() {
    init(1e7);
    int T;
    scanf("%d", &T);
    for(; T --; ) {
        scanf("%d%d", &n, &m);
        LL ans = 0;
        int x = (n < m ? n : m);
        for(int i = 1; i <= tot && pr[i] <= x; i ++)
            ans += calc(n / pr[i], m / pr[i]);
        printf("%lld\n", ans);
    }
    return 0;
}

于是:喜闻乐见TLE

考虑优化:

p=1nd=1npμ(d)npdmpd ∑ p = 1 n ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ n p d ⌋ ⌊ m p d ⌋

枚举 T=pd T = p d

=T=1np|Tμ(Tp)nTmT = ∑ T = 1 n ∑ p | T μ ( T p ) ⌊ n T ⌋ ⌊ m T ⌋

=T=1nnTmTp|Tμ(Tp) = ∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ∑ p | T μ ( T p )

于是我们可以预处理后面的 μ μ ,询问的时间复杂度从玄学的 O(?) O ( ? ) 优化到 O(n+m) O ( n + m )

#include <cstring>
#include <cstdio>

typedef long long LL;

const int MAXN = 1e7 + 10;

bool tag[MAXN];
int pr[MAXN], tot, n, m;
int mu[MAXN];
LL sum[MAXN];

void init(int n) {
    memset(tag, 1, sizeof tag);
    tag[1] = false;
    mu[1] = 1;
    for(int i = 2; i <= n; i ++) {
        if(tag[i]) {
            pr[++ tot] = i;
            mu[i] = -1;
        }
        for(int j = 1; j <= tot && pr[j] * (LL)i <= n; j ++) {
            tag[i * pr[j]] = false;
            if(i % pr[j] == 0) {
                mu[i * pr[j]] = 0;
                break ;
            }
            mu[i * pr[j]] = - mu[i];
        }
    }
    for(int i = 1; i <= tot; i ++)  
        for(int j = 1; j * 1ll * pr[i] <= n; j ++)
            sum[j * pr[i]] += mu[j];
    for(int i = 1; i <= n; i ++)
        sum[i] += sum[i - 1];
}

LL calc(int r1, int r2) {
    LL ans = 0;
    int r = (r1 < r2 ? r1 : r2);
    for(int i = 1, j; i <= r; i = j + 1) {
        j = r1 / (r1 / i);
        if(j > r2 / (r2 / i)) j = r2 / (r2 / i);
        ans += (sum[j] - sum[i-1]) * 1ll * (r1 / i) * (r2 / i);
    }
    return ans;
}

int main() {
    init(1e7);
    int T; scanf("%d", &T);
    for(; T --; ) {
        scanf("%d%d", &n, &m);
        if(n > m) n ^= m ^= n ^= m;
        printf("%lld\n", calc(n, m));
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值