「BZOJ 2154」Crash的数字表格「莫比乌斯反演」

题目传送门

题意

ni=1mj=1lcm(i,j) ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) ,对 20101009 20101009 取模

题解

不妨设nm.

ni=1mj=1lcm(i,j)

=ni=1mj=1ijgcd(i,j)

=\sum_{d=1}^{n}\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{ij}{d} [gcd(i,j)=d]

=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} ijd [gcd(i,j)=1]

=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} ij[gcd(i,j)=1]

=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} ije(gcd(i,j))

=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} ij \sum_{k|gcd(i,j)} \mu(k)

=\sum_{d=1}^{n}d \sum_{k=1}^{\lfloor\frac{n}{d}\rfloor} \mu(k) \sum_{i=1}^{\lfloor\frac{n}{dk}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{dk}\rfloor} ijk^2

=\sum_{d=1}^{n}d \sum_{k=1}^{\lfloor\frac{n}{d}\rfloor} k^2\mu(k) \sum_{i=1}^{\lfloor\frac{n}{dk}\rfloor} i\sum_{j=1}^{\lfloor\frac{m}{dk}\rfloor} j

sum(k)表示\sum_{i=1}^{k}i,即\frac{k(k+1)}{2}

=\sum_{d=1}^{n}d \sum_{k=1}^{\lfloor\frac{n}{d}\rfloor} k^2\mu(k) sum(\lfloor\frac{n}{dk}\rfloor)sum(\lfloor\frac{m}{dk}\rfloor)

枚举T=dk

=\sum_{T=1}^{n}sum(\lfloor\frac{n}{T}\rfloor)sum(\lfloor\frac{m}{T}\rfloor)\sum_{d|T}d (\frac{T}{d})^2\mu(\frac{T}{d})

考虑到枚举d相当于枚举T/d

=\sum_{T=1}^{n}sum(\lfloor\frac{n}{T}\rfloor)sum(\lfloor\frac{m}{T}\rfloor)\sum_{d|T}\frac{T}{d} (d)^2\mu(d)

=\sum_{T=1}^{n}sum(\lfloor\frac{n}{T}\rfloor)sum(\lfloor\frac{m}{T}\rfloor)\sum_{d|T} Td\mu(d)

=\sum_{T=1}^{n}sum(\lfloor\frac{n}{T}\rfloor)sum(\lfloor\frac{m}{T}\rfloor)T\sum_{d|T} d\mu(d)

f(T)=\sum_{d|T} d\mu(d),这可以线性筛

如果pi的一个质因子,那么f(ip)=f(i)(因为p加入不会产生新的有贡献的约数d)。否则这个p乘上之前的每一个约数d,使得\mu(pd)=-\mu(d),加入答案里,即f(ip)=f(i)-pf(i)=(1-p)f(i),注意到f(p)=1-p(根据定义),即f(ip)=f(i)f(p).

于是就可以愉快的数论分块+线性筛了

#include <iostream>
#include <cstdio>
using namespace std;

const int MOD = 20101009;
const int MAXN = 1e7 + 10;

int n, m;
int pr[MAXN], tot;
int f[MAXN], sum[MAXN];
bool tag[MAXN];

void init(int n) {
    tag[1] = true;
    f[1] = sum[1] = 1;
    for(int i = 2; i <= n; i ++) {
        if(!tag[i]) {
            pr[++ tot] = i;
            f[i] = ((1 - i) % MOD + MOD) % MOD;
        }
        for(int j = 1; j <= tot && i * 1ll * pr[j] <= n; j ++) {
            tag[i * pr[j]] = true;
            if(i % pr[j] == 0) {
                f[i * pr[j]] = f[i];
                break ;
            }
            f[i * pr[j]] = f[i] * 1ll * f[pr[j]] % MOD;
        }
    }
    for(int i = 2; i <= n; i ++) {
        f[i] = (f[i - 1] + 1ll * f[i] * i % MOD) % MOD;
        sum[i] = (sum[i - 1] + 1ll * i) % MOD;
    }
}

int main() {
    scanf("%d%d", &n, &m);
    if(n > m) swap(n, m);
    init(m);
    int ans = 0;
    for(int i = 1, j; i <= n; i = j + 1) {
        j = min(n / (n / i), m / (m / i));
        ans = (ans + ((( (f[j] - f[i-1]) % MOD + MOD ) % MOD) * 1ll \
        * sum[n / i] % MOD * 1ll * sum[m / i] % MOD)) % MOD;
    }
    printf("%d\n", ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用 JavaScript 编写的记忆游戏(附源代码)   项目:JavaScript 记忆游戏(附源代码) 记忆检查游戏是一个使用 HTML5、CSS 和 JavaScript 开发的简单项目。这个游戏是关于测试你的短期 记忆技能。玩这个游戏 时,一系列图像会出现在一个盒子形状的区域中 。玩家必须找到两个相同的图像并单击它们以使它们消失。 如何运行游戏? 记忆游戏项目仅包含 HTML、CSS 和 JavaScript。谈到此游戏的功能,用户必须单击两个相同的图像才能使它们消失。 点击卡片或按下键盘键,通过 2 乘 2 旋转来重建鸟儿对,并发现隐藏在下面的图像! 如果翻开的牌面相同(一对),您就赢了,并且该对牌将从游戏中消失! 否则,卡片会自动翻面朝下,您需要重新尝试! 该游戏包含大量的 javascript 以确保游戏正常运行。 如何运行该项目? 要运行此游戏,您不需要任何类型的本地服务器,但需要浏览器。我们建议您使用现代浏览器,如 Google Chrome 和 Mozilla Firefox, 以获得更好、更优化的游戏体验。要玩游戏,首先,通过单击 memorygame-index.html 文件在浏览器中打开游戏。 示: 该项目为国外大神项目,可以作为毕业设计的项目,也可以作为大作业项目,不用担心代码重复,设计重复等,如果需要对项目进行修改,需要具备一定基础知识。 注意:如果装有360等杀毒软件,可能会出现误报的情况,源码本身并无病毒,使用源码时可以关闭360,或者添加信任。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值