「学习笔记」Fast Fourier Transform 快速傅里叶变换

前言

快速傅里叶变换( Fast Fourier Transform,FFT \text{Fast Fourier Transform,FFT} Fast Fourier Transform,FFT )是一种能在 O ( n log ⁡ n ) O(n \log n) O(nlogn)的时间内完成多项式乘法的算法,在 O I OI OI中的应用很多,是多项式相关内容的基础。下面从头开始介绍 FFT \text{FFT} FFT

前置技能:弧度制、三角函数、平面向量。

多项式

形如 f ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a n x n f(x)=a_0+a_1x+a_2x^2+...+a_nx^n f(x)=a0+a1x+a2x2+...+anxn的式子称为 x x x n n n次多项式。其中 a 0 , a 1 , . . . , a n a_0,a_1,...,a_n a0,a1,...,an称为多项式的系数。

系数表达法

上面定义中的表示就是系数表达法。其系数可看成 n + 1 n+1 n+1维向量 a ⃗ = ( a 0 , a 1 , . . . , a n ) \vec a=(a_0,a_1,...,a_n) a =(a0,a1,...,an)

点值表达法

把多项式看成一个函数,点值表示就用它图像上的 n + 1 n+1 n+1个不同的点 ( x 0 , y 0 ) , . . . , ( x n , y n ) (x_0,y_0),...,(x_n,y_n) (x0,y0),...,(xn,yn)来确定这个多项式。多项式有不止一个点值表示,可以证明每个点值表示确定唯一的系数表达多项式。

复数

虚数单位

i i i被称为虚数单位。规定 i = − 1 i=\sqrt {-1} i=1

复平面

复数的平面由 x , y x,y x,y轴组成。 x x x轴称为实轴, y y y轴称为虚轴。平面内的每一个从原点到某个点 ( a , b ) (a,b) (a,b)的向量 a ⃗ = ( a , b ) \vec a=(a,b) a =(a,b)表示复数 a + b i a+bi a+bi.

复数的模长: a 2 + b 2 \sqrt {a^2+b^2} a2+b2 .实轴到复数向量的转角 θ \theta θ称为幅角。

复数的基本运算

  • 复数的加(减)法: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a+bi)+(c+di)=(a+c)+(b+d)i (a+bi)+(c+di)=(a+c)+(b+d)i

  • 复数的乘法: ( a + b i ) ( c + d i ) = ( a c - b d ) + ( b c + a d ) i (a+bi)(c+di)=(ac-bd)+(bc+ad)i (a+bi)(c+di)=(acbd)+(bc+ad)i

  • 一个结论:复数乘法,模长相乘,幅角相加

共轭复数

a + b i a+bi a+bi a − b i a-bi abi互为共轭复数。

单位根

n n n次单位根是满足 z n = 1 z^n=1 zn=1 n n n个复数,它们均分复平面的单位圆(如图)。

这些复数满足模长为 1 1 1,幅角的 n n n倍是 2 π 2\pi 2π的倍数

根据欧拉公式:

欧拉公式 e x i = cos ⁡ x + i sin ⁡ x e^{xi}=\cos x+i \sin x exi=cosx+isinx,其中 e e e为自然对数的底数, i i i为虚数单位。

可得 n n n次单位根为 e 2 π k i n , k ∈ [ 0 , n − 1 ] e^{\frac{2\pi ki}{n}},k\in [0,n-1] en2πki,k[0,n1]

得:记 ω n = e 2 π i n , \omega_n=e^{\frac{2\pi i}{n}}, ωn=en2πi, n n n次单位根为 ω n 0 , . . . , ω n n − 1 \omega_n^0,...,\omega_n^{n-1} ωn0,...,ωnn1

单位根的性质

性质 1 1 1:根据定义得到: ω 2 n 2 k = ω n k \omega_{2n}^{2k}=\omega_{n}^{k} ω2n2k=ωnk(消去定理的特殊情形)

性质 2 2 2 ω n n 2 + k = − ω n k \omega_{n}^{\frac{n}{2}+k}=-\omega_n^k ωn2n+k=ωnk

证明:

ω n n 2 = e 2 π i n n 2 = e π i = cos ⁡ π + i sin ⁡ π = − 1 \omega_{n}^{\frac{n}{2}}=e^{\frac{2\pi i}{n} \frac{n}{2}}=e^{\pi i}=\cos \pi+i \sin \pi=-1 ωn2n=en2πi2n=eπi=cosπ+isinπ=1

ω n n 2 + k = ω n n 2 ω n k = − ω n k \omega_{n}^{\frac{n}{2}+k}=\omega_{n}^{\frac{n}{2}}\omega_{n}^{k}=-\omega_n^k ωn2n+k=ω

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值