半监督目标检测

文章介绍了半监督目标检测的不同方法,包括一致性学习和伪标签策略。这些方法利用少量带标签数据和大量无标签数据,通过教师网络生成伪标签或计算无标签数据的一致性损失来提升模型性能。还提到了一些具体的工作,如Instant-Teaching和SoftTeacher,它们通过不断更新教师网络和使用软标签来优化学习过程。此外,文章还探讨了开放世界目标检测的挑战和解决方案,如通过聚类和能量模型识别未知类。

在这里插入图片描述

  • 有监督目标检测: 拥有大规模带标签的数据,包括完整的实例级别的标注,即包含坐标和类别信息;
  • 弱监督目标检测: 数据集中的标注仅包含类别信息,不包含坐标信息,如图一 b 所示;
  • 弱半监督目标检测: 数据集中拥有部分实例级别的标注,大量弱标注数据,模型希望利用大规模的弱标注数据提升模型的检测能力;
  • 半监督目标检测: 数据集中拥有部分实例级别的标注,大量未标注数据,模型希望利用大规模的无标注的数据提升模型的检测能力;

半监督目标检测

  1. 一致性学习(Consistency based Learning)
  2. 伪标签(Pseudo-label based Learning)
    https://paperswithcode.com/task/semi-supervised-object-detection

一致性学习

论文: Consistency-based Semi-supervised Learning for Object Detection (https://papers.nips.cc/paper/2019/hash/d0f4dae80c3d0277922f8371d5827292-Abstract.html)
代码:https://github.com/soo89/CSD-SSD (pytorch)
概要:
在这里插入图片描述
CSD训练的损失函数主要包括两个部分,labeled sample 的监督损失和 unlabeled samples 的 Consi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值