
- 有监督目标检测: 拥有大规模带标签的数据,包括完整的实例级别的标注,即包含坐标和类别信息;
- 弱监督目标检测: 数据集中的标注仅包含类别信息,不包含坐标信息,如图一 b 所示;
- 弱半监督目标检测: 数据集中拥有部分实例级别的标注,大量弱标注数据,模型希望利用大规模的弱标注数据提升模型的检测能力;
- 半监督目标检测: 数据集中拥有部分实例级别的标注,大量未标注数据,模型希望利用大规模的无标注的数据提升模型的检测能力;
半监督目标检测
- 一致性学习(Consistency based Learning)
- 伪标签(Pseudo-label based Learning)
https://paperswithcode.com/task/semi-supervised-object-detection
一致性学习
论文: Consistency-based Semi-supervised Learning for Object Detection (https://papers.nips.cc/paper/2019/hash/d0f4dae80c3d0277922f8371d5827292-Abstract.html)
代码:https://github.com/soo89/CSD-SSD (pytorch)
概要:

CSD训练的损失函数主要包括两个部分,labeled sample 的监督损失和 unlabeled samples 的 Consi

文章介绍了半监督目标检测的不同方法,包括一致性学习和伪标签策略。这些方法利用少量带标签数据和大量无标签数据,通过教师网络生成伪标签或计算无标签数据的一致性损失来提升模型性能。还提到了一些具体的工作,如Instant-Teaching和SoftTeacher,它们通过不断更新教师网络和使用软标签来优化学习过程。此外,文章还探讨了开放世界目标检测的挑战和解决方案,如通过聚类和能量模型识别未知类。
最低0.47元/天 解锁文章
2522

被折叠的 条评论
为什么被折叠?



