论文列表——stance detection

这学期做了一些和stance detection相关的工作,stance detection,可理解为“立场检测”,stance即为人对个体、事物、事件所表现出的看法或者态度,如“支持、反对”。stance detection虽然也属于文本分类,但和基于主题的文本分类、情感分类有些差异,stance的表达是更隐晦的,因此分类难度更大。在此列出自己阅读论文的列表,部分论文直接列出一些简单的笔记,这些论文可读性不强(方法过于简单,或者论文本身的贡献不在方法上,没有太多记录成笔记的价值…),部分论文会逐步完善,给出简单的阅读笔记。阅读价值评分纯粹是基于自己对于文章的理解,标准包括:动机、方法、数据集质量、实验安排、相关工作等,满分为5(相对评分,即分值高低仅反映论文在以下列表中的可读价值,并不一定说明这篇文章有多好)。列表如下:

名称 所属会议(来源) 类型 时间 阅读价值 笔记
Modeling Stance in Student Essays ACL long paper 2016 1 自己构建的student essay数据集,包含800多篇,6分类;构建了很多特征,其中path-based features可以看看。实验效果比前人的基于feature set的模型要好一点。
Hawkes Processes for Continuous Time Sequence Classification: an Application to Rumour Stance Classification in Twitter ACL short paper 2016 1 较早的一篇文章,稍微看看就好。里面将Twitter转化为时序,进而用统计学模型进行求解的转化思路值得借鉴。
A Multidimensional Lexicon for Interpersonal Stancetaking Umashanthi ACL long paper 2017 1
Cross-Target Stance Classification with Self-Attention Networks ACL short paper 2018 3.5 在具有相似预测目标的不同态度分类数据集上进行迁移学习。将模型从数据集A中学习到的关于target的知识运用到数据集B的目标预测上。划重点,迁移学习。
Weakly-Guided User Stance Prediction via Joint Modeling of Content and Social Interaction CIKM long paper 2017 2.5 无监督的stance prediction。自己爬取的CNN news和4Forums;由于数据是跟debate forum相关的,因此每条post都有有十分丰富的上下文,并且上下文不同post之间会产生关系(支持、反驳等)。模型先根据一系列的上下文和不同post
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>