基于计算机视觉的物体表面缺陷检测系统 - 包含Matlab源码

87 篇文章 34 订阅 ¥59.90 ¥99.00
本文介绍了一种基于计算机视觉的物体表面缺陷检测系统,包括图像获取、预处理、特征提取(如灰度共生矩阵GLCM)和缺陷检测四个步骤。系统利用Matlab实现,并提供了源码示例,适用于自动化检测和分类物体表面缺陷。实际应用中,源码可能需要根据具体需求进行调整和优化。
摘要由CSDN通过智能技术生成

简介:
物体表面缺陷检测是制造业中一个重要的质量控制环节。基于计算机视觉的缺陷检测系统可以自动化地检测和分类物体表面的缺陷,提高生产效率和产品质量。本文将介绍一个基于计算机视觉的物体表面缺陷检测系统,并提供相应的Matlab源码实现。

系统架构:
该系统的主要架构包括图像获取、预处理、特征提取和缺陷检测四个主要步骤。以下是每个步骤的详细说明及相应的Matlab源码。

  1. 图像获取:
    首先,我们需要获取待检测物体的图像。这可以通过摄像头、图像文件或者其他图像采集设备来实现。在Matlab中,可以使用imread函数读取图像文件,或者通过Image Acquisition Toolbox来获取实时图像。
% 读取图像文件
image = imread('image.jpg');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值