torch.gather 解释&示例

torch.gather是一个PyTorch函数,用于按照给定的索引从输入张量中收集指定的元素。它接受三个参数:

  • input:输入张量,其形状为 (B, N, C),其中 B 表示批次大小,N 表示每个批次中的元素数,C 表示每个元素的特征数。

  • dim:表示需要收集的维度。例如,如果 dim=1,则表示沿着第二个维度收集元素。

  • index:一个张量,包含了从输入张量 input 中收集元素所需的索引。它的形状为 (B, M),其中 M 表示每个批次中要收集的元素数量。

函数会返回一个形状为 (B, M, C) 的张量,其中第 i 个批次的第 j 个元素是输入张量 input 中第 i 个批次的第 index[i][j] 个元素。

这个函数通常用于实现集中式注意力机制,其中 input 表示输入特征,index 表示每个元素需要聚焦的位置。

以下是几个使用torch.gather函数的示例:

示例1:获取每个批次的最大值
import torch

# 创建一个大小为 (2, 4, 3) 的输入张量
input_tensor = torch.tensor([
    [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],
    [[13, 14, 15], [16, 17, 18], [19, 20, 21], [22, 23, 24]]
])

# 沿着第二个维度获取每个批次的最大值的索引
max_indices = torch.argmax(input_tensor, dim=1)

# 使用 torch.gather 收集每个批次的最大值
max_values = torch.gather(input_tensor, dim=1, index=max_indices.unsqueeze(-1).repeat(1, 1, input_tensor.shape[-1]))

print(max_values)
# 输出:
# tensor([[[10, 11, 12]],
#         [[22, 23, 24]]])

这个示例中,我们首先使用torch.argmax函数获取每个批次的最大值的索引,然后使用torch.gather函数收集这些最大值。我们在索引张量的最后一个维度上添加了一个额外的维度,以便torch.gather可以正确地收集最大值。

示例2:从每个批次的张量中收集指定位置的元素
import torch

# 创建一个大小为 (2, 4, 3) 的输入张量
input_tensor = torch.tensor([
    [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],
    [[13, 14, 15], [16, 17, 18], [19, 20, 21], [22, 23, 24]]
])

# 创建一个大小为 (2, 2) 的索引张量
indices = torch.tensor([[1, 3], [0, 2]])

# 从每个批次的张量中收集指定位置的元素
gathered_values = torch.gather(input_tensor, dim=1, index=indices.unsqueeze(-1).repeat(1, 1, input_tensor.shape[-1]))

print(gathered_values)
# 输出:
# tensor([[[ 4,  5,  6],
#          [10, 11, 12]],
# 
#         [[13, 14, 15],
#          [19, 20, 21]]])

在这个示例中,我们创建了一个索引张量,指定了要从每个批次的张量中收集的元素的位置。我们然后使用torch.gather函数收集这些元素,并将结果保存在一个新的张量中。

一个复杂一些的例子

indices = torch.unsqueeze(tokens[:,
    (prev_context_length + 1):(context_length + 1)],2)
output_log_probs[:,prev_context_length:context_length] = \
    torch.gather(log_probs, 2, indices).squeeze(2)

这段代码主要实现了一个从一个Tensor中按照给定索引收集元素的操作。

首先,代码通过切片操作tokens[:, (prev_context_length + 1):(context_length + 1)]获取了一个张量,这个张量是输入log_probs张量中需要收集元素的索引。这个张量的形状应该是(B, L, 1),其中B表示batch大小,L表示序列长度,因为torch.gather需要输入的索引张量的形状是(B, L, 1)

接下来,使用torch.unsqueeze函数在这个张量的最后一个维度上增加了一个维度,将其形状变成(B, L, 1, 1)。这是为了方便torch.gather函数的使用,因为torch.gather需要在索引张量的最后一个维度上收集元素。

然后,代码使用torch.gather函数,将log_probs张量中需要收集的元素按照索引张量indices收集起来,并将结果存储在output_log_probs张量的相应位置中。这里,dim=2表示在log_probs张量的第3个维度(即特征数)上收集元素。最后,使用squeeze函数去除结果张量中的冗余维度,得到最终的输出结果。

<think>嗯,用户问的是PyTorchtorch.gather函数的参数设置方法。我需要先回忆一下这个函数的基本用法和参数。根据之前看到的引用,比如引用[1]和[2],函数语法是torch.gather(input, dim, index, out=None)之类的。参数包括input、dim、index,还有可选的out和sparse_grad。 首先,用户需要了解各个参数的作用。input是输入张量,dim是指定的维度,index是索引张量,它们形状的关系需要注意。可能得解释dim如何影响索引的方向,比如dim=0时沿着行,dim=1时沿着列。然后,可能需要用示例来说明,比如引用[4]中的例子,当dim=1时,每个元素在dim维度上根据index取值。 然后,用户可能需要知道参数设置的注意事项。比如index的形状必须和input在除了dim维度外其他维度相同。比如如果input是3x4的,dim=1,那么index可以是3x2的,但dim=0的话,index应该是2x4之类的。或者是否允许广播?可能不允许,需要严格匹配。需要确认引用中的例子是否符合这一点。 另外,用户可能容易混淆dim参数的作用。比如在二维情况下,dim=0是按列索引,dim=1是按行索引。这时候可能需要用例子直观展示,比如引用[3]中的示例一,当dim=0时,index的每个元素对应行号,从input的不同行中取数据。 还需要解释每个参数的数据类型,比如index必须是LongTensor。input可以是各种类型,但index必须是整数类型的。另外,out参数是可选的,用于指定输出张量,但通常不需要设置,让函数自动生成即可。 可能还需要比较gather和scatter的关系,但用户的问题集中在参数设置,所以可能暂时不需要展开。不过如果用户后续问到,可以提及。 现在要组织回答的结构,先介绍函数的作用,然后逐个参数解释,再结合示例。确保每个参数都有说明,特别是dim和index的关系,以及index的形状要求。可能还需要提到常见的错误,比如维度不匹配或者索引越界。 比如引用[4]中的例子,input是3x3,index也是3x3,当dim=1时,每个元素在各自的行里根据索引值取列的位置。比如第一行第一个索引是0,所以取第一个元素1,第二个索引是2,所以取第三个元素3,第三个是1,取第二个元素2,所以第一行结果是[1,3,2]。这样用户就能理解dim的作用。 然后,用户可能需要多个维度的例子,比如dim=0的情况,比如在二维张量中,当dim=0时,索引对应的是行号,所以每个位置根据index中的行号取对应行的元素。例如,引用[3]中的示例一,input是2x4的,index是3x3的,当dim=0时,取不同行的元素,但由于input只有两行,所以index中的值不能超过1,否则会报错。 总结参数设置的关键点:确定dim的值,确保index的形状正确,索引值不超过input在对应维度的大小。同时,给出不同维度的示例,帮助用户理解。最后,提醒常见错误和注意事项,比如数据类型和形状匹配。</think>PyTorch中的`torch.gather`函数用于根据索引从输入张量中收集数据。其参数设置直接影响数据收集的维度与规则,以下是详细说明: --- ### **参数用法详解** #### 1. **`input`**(必需参数) - **作用**:输入张量,作为数据源。 - **要求**:可以是任意维度的张量,但需与`index`的维度匹配(除`dim`维度外)。 #### 2. **`dim`**(必需参数) - **作用**:指定收集数据的维度方向。 - **规则**: - 若`dim=0`,按**列方向**索引(纵向); - 若`dim=1`,按**行方向**索引(横向)。 - **示例**:对于二维张量: - `dim=0`时,`index`中的值为行号; - `dim=1`时,`index`中的值为列号。 #### 3. **`index`**(必需参数) - **作用**:索引张量,决定从`input`的哪些位置取值。 - **要求**: - 数据类型必须为`torch.int64`(LongTensor); - 维度需与`input`相同,但`dim`维度的尺寸可以不同; - 索引值不能超过`input`对应维度的最大下标。 #### 4. **`out`**(可选参数) - **作用**:指定输出张量,用于接收结果。 - **默认**:若未指定,返回新张量。 --- ### **关键示例解析** #### 示例1:`dim=1`(横向收集) ```python input = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) index = torch.tensor([[0, 2, 1], [2, 0, 1], [1, 2, 0]]) result = torch.gather(input, dim=1, index=index) ``` - **逻辑**: - 对每一行,按`index`中的列号取值。 - 第一行:`index=[0,2,1]` → 取第0、2、1列 → `[1,3,2]`[^4]。 - **结果**: ``` [[1, 3, 2], [6, 4, 5], [8, 9, 7]] ``` #### 示例2:`dim=0`(纵向收集) ```python input = torch.tensor([[11, 12, 13, 14], [21, 22, 23, 24]]) index = torch.tensor([[1, 0, 0], [1, 1, 0], [0, 1, 0]]) result = torch.gather(input, dim=0, index=index) ``` - **逻辑**: - 对每一列,按`index`中的行号取值。 - 第一列:`index[0,0]=1` → 取第1行第0列 → `21`; - 第二列:`index[0,1]=0` → 取第0行第1列 → `12`[^3]。 - **结果**: ``` [[21, 12, 13], [21, 22, 13], [11, 22, 13]] ``` --- ### **常见错误及注意事项** 1. **维度不匹配**:`index`的维度必须与`input`相同(除`dim`维度外)。 2. **索引越界**:`index`中的值必须小于`input`在`dim`维度的尺寸。 3. **数据类型错误**:`index`必须为整数类型(如`torch.int64`)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值