无旋treap树

本文详细介绍了无旋treap树的基本概念,包括数据约定、分裂、合并、插入、删除等操作,以及如何求权值为k的点的排名和排名为k的点的权值,还探讨了求前驱后继的方法。此外,提供了普通平衡树和适用于区间操作的平衡树实现。
摘要由CSDN通过智能技术生成

约定:

int ch[maxd][3];//0左儿子,1右儿子
int val[maxd];//权值
int rnd[maxd];//随机权值
int sze[maxd];//以每个点为根树的大小
int T,rt,x,y,z;

分裂:

inline void update(int x)
{
    sze[x]=1+sze[ch[x][0]]+sze[ch[x][1]];
}
//x为权值小于k的子树的根,y为剩下的子树的根

void split(int now,int k,int &x,int &y)//权值分裂
{
    if(!now)
    {
        x=y=0;
        return ;
    }
    else if(val[now]<=k)//它及它的左子树都小于等于k,递归向右找第二颗树
    {
        x=now;
        split(ch[now][1],k,ch[now][1],y);
    }
    else
    {
        y=now;
        split(ch[now][0],k,x,ch[now][0]);
    }
    update(now);//更新sze
}
//x为前k个的子树的根,y为剩下的子树的根

void split1(int now,int k,int &x,int &y)//单点
{
    if(!now)
    {
        x=y=0;
    }
    else{
        if(k<=sze[ch[now][0]])//左子树元素个数大于k个,将右子树全部放在第二颗树上,递归分裂左子树
        {
            y=now;
            split1(ch[now][0],k,x,ch[now][0]);
        }
        else{
            x=now;
            split1(ch[now][1],k-sze[ch[now][0]]-1,ch[now][1],y);
        }
    }
    update(now);

}

合并:

//我们假设第一棵树的权值小于第二棵树的权值,
//那么我们就比较它们的随机权值。
//如果rnd[l]<rnd[r],我们就保留它的左子树,
//另一棵树作为它的右子树;如果rnd[l]>=rnd[r],
//那我们可以保留第二棵树的右子树,另一颗树作为它的左子树。
int merge(int A,int B)
{
    if(!A||!B)
    {
        return A+B;
    }
    if(rnd[A]<rnd[B])
    {
        ch[A][1]=merge(ch[A][1],B);
        update(A);
        return A;
    }
    else
    {
        ch[B][0]=merge(A,ch[B][0]);
        update(B);
        return B;
    }
}

插入:


int new_node(int x)
{
    sze[++T]=1;
    val[T]=x;
    rn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值