《球面天文学和天体力学引论》83节及1*节

目录

83节 椭圆运动或开普勒运动

1*速端曲线

83节 椭圆运动或开普勒运动

我们都知道,在天体运动中,行星绕恒星做椭圆运动,恒星在其中一个焦点上。而这个椭圆的表达式我们在上一节也已经进行过了推理,接下来我们将更进一步。

我们的椭圆方程是在面积速度方程得出的,所以我们这一次继续从这一方程开始。

不难知道,椭圆的面积为S=\pi ab ,面积有了,现在还缺少时间,所以我们设周期T,那么面积速度就是\frac{\pi ab}{T} ,那么我们在上一节给出的为两倍面积速度的C,就是\frac{2\pi ab}{T} ,带着b看着很难受,那就可以把b换掉最终能得到式子(83-1)

                                                          C=\frac{2\pi a^2\sqrt{1-e^2}}{T}                                          

下一步肯定是联立,联立就需要能消掉其中元素的式子,然后我们能发现2-13中的式子极大的满足了我们的要求,如:

C^2=k(m+m\prime)a(1-e^2)

开个根号就是                      

C=\sqrt{k(m+m\prime)a(1-e^2)}

可以同时消掉C和\sqrt{(1-e^2)}

带入后能得到式子 (83-2)

k(m+m\prime)=\frac{4\pi^2a^3}{T^2}

由于m和m’质量差距巨大,所以我们可以做近似计算忽略m’,

便能得到                                            km=\frac{4\pi^2a^3}{T^2}

即(83-3)

                                                               \frac{km}{4\pi^2}=\frac{a^3}{T^2}                                               

这就是开普勒第三定律

又或者                         

    V^2-k(m+m\prime)\left(\frac{2}{r}+\frac{\left(e^2-1\right)}{p}\right)=0

根据椭圆的性质,椭圆上的一点到两个焦点的距离之和为2a,就能把分子的2a-r写成r’,即到另一个焦点的距离。

即 (83-4)

V=\frac{4\pi a}{T}\sqrt{\left(\frac{r\prime}{r}\right)}

1*速端曲线

Ps:速端曲线出现在82节与83节,在两节中出现的推导及终式最终都要代入速端曲线得到结论,但是我感觉放在分开的两节过于突兀 ,所以便把速端曲线摘出来为专门的一节,后面再出现类似的东西还会以这种形式总结。

速端曲线,可以用来展示出物体的矢量运动。以某定点P为起点,画出随时间变化的速度矢量,它们的端点在空间绘出的曲线称为速端曲线图。(如下图)

我找了很多资料,但是找了很久都找不到速端曲线到底是什么,所以只能靠自己理解了。这个概念以及图应该都和极坐标差不多,速度大小影响半径,速度方向影响角度,最终绘制出整个的曲线,以实现对速度的直观理解。但是我也不确定,假如有更正确的理解我后续还会修改。

修订:其实好像没有那么复杂,好像就是最基本的自然坐标然后向量是速度。

而我们要证明的,便是:开普勒运动的速端曲线是正圆形

为了方便推导,我们将其分解,分解为法向速度和切向速度。

其中法向速度会改变它的r,切向速度会改变它的方向θ

那就先求切向速度,其实也就是线速度,其中V_1=wr=\frac{d\theta}{dt}r ,此时我们便能代入82节的1-2,即r^2\frac{d\theta}{dt}=C

得到                                                        V_1=\frac{C}{r}

再代入得出2-11的设\frac{1}{r}=\frac{1}{p}(1+ecos\theta)

便能得到(1*-1)

                                 V_1=\frac{d\theta}{dt}r=\frac{C}{r}=\frac{C(1+ecos\theta)}{p}                                

随后是法向速度,我们还是直接用\frac{1}{r}=\frac{1}{p}(1+ecos\theta) ,因为它含有r,是我们需要的东西,求导后能够得到

                                                       -\frac{1}{r^2}\frac{dr}{dt}=-\frac{esin\theta}{p}\frac{d\theta}{dt}

即                                                      \frac{dr}{dt}=\frac{esin\theta}{p}\frac{d\theta}{dt}r^2

再代入1-2,便能得到(1*-2)

                                                         V_2=\frac{dr}{dt}=\frac{Cesin\theta}{p}                                        

不难看到,不管是V_1还是V_2 ,组成它们的都只有\frac{C}{p}\frac{Ce}{p} ,而其中的三角函数则可以通过向量的不同角度实现。

所以我们可以将它的速端曲线视作两个大小不变的分向量的组合

分别是  (1*-3) 

                                          V_a=\frac{C}{p}V_b=\frac{Ce}{p}                                     

其中V_a与AB垂直,V_b与过焦点(即过A)的线垂直,方向与近日点的速度方向相同。

然后就能得到这个圆的半径是V_a,距离A的距离为V_b,如上图。

假如用β 来表示总速度V和切向速度的角度,则(1*-4)

                                          tan\beta=\frac{dr}{rd\theta}=\frac{esin\theta}{1+ecos\theta}=\frac{resin\theta}{p}                           

不得不说,这两节超级抽象,并且丹容讲的也很粗略和抽象,我到现在都还在理解速端曲线,假如后面彻底理解了,肯定还是会继续修订的,但是这周就先更新到这里了,后面还会修改。

更新时间2023/7/14

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值