- 博客(20)
- 资源 (4)
- 收藏
- 关注
原创 Linux 开机自动mount硬盘
sudo fdisk -l # 查看可挂载的磁盘df -h # 查看已经挂载的磁盘sudo mkfs.ext4 /dev/sdb2 # 初始化磁盘sudo mount /dev/sdb2 /media # mount 磁盘到/media,需/medi...
2019-10-20 11:19:43 1670
原创 Ubuntu下的Linux基础命令(不定期更新)
接触Linux也有一段时间了,主要以Debian系的Ubuntu为主,偶尔用CentOS。Linux记住一些常用的命令基本上就算入门了,可以应付平常的大部分情况。这里试图总结一个常用命令的清单,便于自己和初学者查找。不定期更新。一、账号操作1. 查看现有账号:cat /etc/passwd 其中最左侧的各种就是账号名。cat是查看的意思,别的文件也可以用ca
2016-12-15 19:46:30 709
原创 【飞桨PaddlePaddle论文复现课程】【GAN】论文解读之StarGAN v2
一、前言论文复现课程链接:https://aistudio.baidu.com/aistudio/education/group/info/1340这篇博客主要是对飞桨PaddlePaddle论文复现课程中GAN论文的解析.二、论文解读论文的任务是多域图像转换(Multiple Domain Image-to-Image translation)涉及到2个关键概念:Domain:一组可以分为视觉上独特类别的图像Style:每个图像都有唯一的外观论文动机:...
2020-08-11 11:13:30 760
原创 [飞桨PaddlePaddle论文复现课程][视频分类]论文解读之Representation Flow for Action Recognition
一、前言论文复现课程链接:https://aistudio.baidu.com/aistudio/education/group/info/1340这篇博客主要是对飞桨PaddlePaddle论文复现课程中视频分类论文的解析.课程中有关视频分类的论文主要有4篇, 本博客对其中的第4篇进行解读:1.ECO: Efficient Convolutional Network for Online Video Understanding网址:https://github.com/mzolfa..
2020-08-06 14:52:35 527
原创 感知机中的关键问题:点到平面的距离,和梯度更新的符号
感知机的原理、以及学习方法,还是比较简单的,参考:https://www.pkudodo.com/2018/11/18/1-4/但其中有2点关键,不是特别好理解:1、关于点到平面的距离:参考:https://www.jianshu.com/p/56ec72484bbe2、梯度更新的符号:参考:https://zhuanlan.zhihu.com/p/36503663f(theta) - f(theta_0) = (theta - theta_0) * 梯度
2020-07-03 17:50:41 398
原创 【/强化学习7日打卡营-世界冠军带你从零实践/课程摘要和调参心得-No.5】连续动作空间上求解RL
一、学习内容5.连续动作空间上求解RL5.1连续动作空间离散和连续动作跟环境有关:可分别采用随机性策略和确定性策略:实践中可分别用sample函数和tanh函数:DDPG(Deep Deterministic Policy Gradient)的来源:DDPG可看做DQN的扩展版本,添加了策略网络,使用了RL中的Actor-Critic架构DQN有2条经验的:target网络,以及经验回放DDPG里面也用了相同的方式来稳定训练,算法如下:5.
2020-06-27 16:05:23 342
原创 【/强化学习7日打卡营-世界冠军带你从零实践/课程摘要和调参心得-No.4】基于策略梯度求解RL
一、学习内容4.基于策略梯度求解RL4.1随机策略与策略梯度先来复习一下之前讲的value-based和policy-based的RL方法:Policy-based的方法可直接输出动作的概率,比较适用于随机性策略具体来说就是在网络里面使用常见的softmax函数为了方便大家理解,这里举个Pong游戏的例子:策略是一个episode完了才能评估的,目的是为了让总的Reward尽可能大:策略的状态转移轨迹可以用以下流程来表示:轨迹发生的概率和策略的
2020-06-27 15:17:10 320
原创 【/强化学习7日打卡营-世界冠军带你从零实践/课程摘要和调参心得-No.3】基于神经网络方法求解RL
一、学习内容3.基于神经网络方法求解RL3.1函数逼近与神经网络当状态空间非常庞大的时候,用Q表格来对Q-value进行评估,内存方面非常不现实。因此可以加个w参数,改用值函数拟合的方法:一个简单的例子如图所示,神经网络输出动作,定义损失函数,进行优化:Q-learning的流程:用神经网络:3.2DQN算法解析DQN的2大创新点在于:经验回放,和固定Q目标。分别是为了解决样本关联性和训练非平稳性问题。经验回放,举个形象例子,前台小兵采样预测,
2020-06-26 21:32:00 318
原创 【/强化学习7日打卡营-世界冠军带你从零实践/课程摘要和调参心得-No.2】基于表格型方法求解RL
一、课程内容2.基于表格型方法求解RL2.1 MDP、Q表格强化学习的基本思路来源于马尔科夫决策过程Markov Decision Process(MDP):在设计强化学习方法中,model-free和model-based的区别主要在于是否对policy和reward有预先建模:根据不同场景,reward函数可能会有所不同:比如救护车场景,是有尽头的,每闯一个红灯,时间上收益差不多,那么reward可以加起来:比如股票场景,是没有尽头的,越远的收益越没有价值,那么就
2020-06-26 20:38:04 325
原创 【/强化学习7日打卡营-世界冠军带你从零实践/课程摘要和调参心得-No.1】强化学习初印象
最近参加了百度paddlepaddle第一期的强化学习课程,是百度工程师李科浇老师讲解的,特在此分享一下内容和心得。课程分为7节,内容比较基础,但是讲解的很细致、深刻,主要介绍了值函数、策略梯度的强化学习。下面就分别介绍一下课程内容、和大作业“四轴飞行器”项目的调参心得。会分为好几期,目前先讲第一课的内容。一、课程内容1.强化学习初印象:课程大纲如下:强化学习分为2部分和3要素:应用领域有个性推荐、股票交易、交通灯、对话系统等。强化学习可基本分为2种类型,
2020-06-26 20:01:03 552
原创 关于tensorflow分类模型程序的训练架构的一点思考
过去的一点不成熟的想法,记下来供以后参考。参考tf-slim并简化,可以大致把tensorflow分类模型的python程序,划分为如下的目录结构: 训练程序目录结构:tfrecord_generate.py tfrecord生成用于把数据集生成tfrecord格式的二进制文件完成data_input.py 控制数据输入在里面指定输入数据集的名称以及对应data、label...
2018-09-20 15:45:40 417
原创 windows上的cuda8和cuda9切换,win10 + vs2015
WIN10_CUDA8和CUDA9切换:在开发过程中,CUDA版本经常需要切换。在linux上需要更改环境变量,其实在windows上也是一样的。首先,CUDA8和CUDA9可以兼容安装,在使用时更改环境变量即可切换。如何切换成CUDA8.0:CUDA_PATH,NVCUDASAMPLES_ROOT改成CUDA8.0的路径,Path中CUDA8.0的环境变量移到CUDA9.0的上面...
2018-09-19 21:27:57 6069 3
原创 Opencv中利用VideoCapture类将视频保存为图片
#include <iostream>#include "opencv2/opencv.hpp"using namespace std;using namespace cv;void main(){ VideoCapture cap("G:\\11_10_13.mp4"); if (!cap.isOpened()) { return; } long t...
2018-08-28 20:03:17 1524
原创 Caffe多任务训练时忽略部分无用或未标注类标
Ignore labels in Caffe when using Multi-Task Multi-label training现在不经常用caffe了,不过临时面临一个问题:多任务训练的时候,假设有N个任务,但部分图片类标不全,或者只对其中x(0<x<N)个任务有用,该怎么训练呢?这在tensorflow里面很好实现,合并loss的时候加上判断就行了。但为了方便快速实现,回头在原来...
2018-04-03 14:38:52 1223 1
原创 Python中如何给任务添加进度条
最近不务正业一下,给自己的程序加个进度条,以解决处理长时间任务时对着黑屏或者只看到print的尴尬。以文件读取为例,给出了处理文件每一行并显示进度的一个例子:import sysimport numpy as npdef progress_bar(num_cur, total): ratio = float(num_cur) / total percentage = int(...
2018-03-27 17:04:13 3679
原创 Python中计时,看这一篇就够了
计时对于了解程序的性能是很关键的部分。本文讨论了Python 2和python 3中计时方法,并完成了一个通用的计时装饰器。一、python2和python3的通用计时方法由于python2和3里面的计时函数是不一样的,建议使用timeit模块中的timeit.default_timer()由timeit.default_timer()的官方文档可知,计时时间精度和平台...
2018-02-26 15:56:20 42874
原创 Tensorflow查看网络(inspect)、冻结变量(freeze)和迁移训练(finetune)
Tensorflow查看网络、冻结变量和迁移训练(Inspect network structure, freeze graph variables, and finetune/transfer learning in Tensorflow) 1. 查看网络结构和参数 python/usr/local/lib/python2.7/dist-packages/tenso...
2018-01-05 14:59:15 7421
原创 深度学习中整理图像数据常用的批处理方法
一、前言对于图片识别的深度学习任务,常常需要把大量图片当做训练数据,这时候对于数据的批量处理就十分重要。本文借助如下方法实现了训练图像和测试图像的记录,方便生成lmdb等格式的文件以供训练。1.利用bat,导出图片文件目录信息到directory.set文件;2.利用c++代码把目录文件directory.set分割成训练集train.set和测试集test.set。完成这2步后,你便可以根据se...
2017-02-23 21:44:37 6233
原创 在Ubuntu server 14.04上安装caffe+ATLAS+cuda8.0+opencv2.4.8+python2.7+hdf5
最近一直在业余时间维护服务器,给多台服务器配上了caffe供训练用。本文记录了12月1号在Ubuntu server 14.04上安装当时最新版caffe的全过程。另外注意BLAS使用的是ATLAS,刚开始试了openblas装上引用不了,试了些文章里的方法也不行,就没详细研究。想装openblas的这一部分可以参考别的文章,官网说openblas会比ATLAS快一些。
2016-12-05 15:42:20 2909
原创 N卡双显卡电脑装ubuntu15.04并配置Anaconda+Tensorflow+cuda+cuDNN的深度学习环境
1.序这篇文章的目的是Tensorflow环境配置的经验和流程总结,涉及3个部分:1)装ubuntu并配置显卡驱动;2)装CUDA+cuDNN库并解决cuda与显卡驱动冲突问题3)以常用的科学计算python包Anaconda为基础,Tensorflow放于其子环境中,并配置好编程界面jupyter或spyder2. Tensorflow简介和我的笔记本硬件配置目前
2016-07-16 15:10:45 5076 3
海康图像识别检测经验分享Towards Good Practices for Recognition & Detection
2018-03-29
pguo-PhD-grind.epub
2014-11-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人