【/强化学习7日打卡营-世界冠军带你从零实践/课程摘要和调参心得-No.4】基于策略梯度求解RL

一、学习内容

4.基于策略梯度求解RL

4.1随机策略与策略梯度

先来复习一下之前讲的value-based和policy-based的RL方法:

Policy-based的方法可直接输出动作的概率,比较适用于随机性策略

具体来说就是在网络里面使用常见的softmax函数

为了方便大家理解,这里举个Pong游戏的例子:

策略是一个episode完了才能评估的,目的是为了让总的Reward尽可能大:

策略的状态转移轨迹可以用以下流程来表示:

轨迹发生的概率和策略的期望回报的关系如下:

对比一下DQN和PolicyGradient里面的优化过程:

策略梯度法在优化过程中,会选择loss最小的那一条轨迹

4.2PolicyGradient(策略梯度)算法

区别于DQN中的TD单步更新,经典的PG里面用的是蒙特卡洛回合(episode)制更新:

具体到代码就是从后向前计算所有reward的和。这里特别提醒下,sarsa中,reward是下一时刻的reward,和后面的sa是下标一样的。

 

从算法流程来看,刚才reward折算的过程就是倒数第二行:

类比监督学习来理解PolicyGradient,上面是MNIST的监督学习网络,下面是PolicyGradient中监督的过程(可以看到,多乘了一项rewardG_t作为监督项):

具体Loss的代码定义如下(注意-R后面少了个左括号):

4.3PG代码

PolicyGradient的REINFORCE算法整体流程如下:

可见PARL框架也是早就设计好了:)

代码文件结构如下:

CartPole例子的PG算法训练结果:

model代码:

algorithm代码

agent代码

训练代码

运行展示

4.4总结、作业、公式推导

策略梯度(PG)方法的一个总结:

PolicyGradient解决Pong问题的一个示例:

图像预处理的技巧:

reward的衰减和正则化:

PolicyGradient算法的原理推导(这里讲的非常好,很多书和材料都没有推导)。

注意2点:

1.蓝框里的是一个近似变换,使用了log函数

2.使用log函数后,状态转移概率p因为都没有对theta求导,因此可以删掉

注意最下方公式最右边有点小错误,很好理解,按马尔科夫链,应该是s2,a2,李科浇老师是直接复制过来忘改了。这里改正为:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值