给定一系列有序的线段(比如按顺序给定每个线段的左端点坐标),求这些线段围成的多边形的面积,公式为:
任意一个点与顺序相邻两点组成的三角形面积之和
分为凸多边形和凹多边形分别证明:
一、凸多边形
如下所示的凸多边形,显然是对的,因为所有三角形拼起来就是整个多边形。

S t o t a l = S △ A B C + S △ A C D + S △ A D E S_{total} = S_{△ABC} + S_{△ACD} + S_{△ADE} Stotal=S△ABC+S△ACD+S△ADE,每个三角形的面积通过向量的叉乘的 1/2 计算(两个向量的叉乘几何意义就是两个向量组成的平行四边形面积),也就是 S △ A B C = 1 2