样例就是很直观的贪心...
但是直接按D再T的简单排序就WA了。
正确姿势如下:
考虑两头牛a和b,并且b的下标比a大,时间为Ta、Tb,每分钟吃的花为Da,Db。
若先a再b,则贡献为:
W1 = Db * Ta * 2
若先b再a,则贡献为:
W2 = Da * Tb * 2
要使第二种方案最优,即
W2 < W1
Da * Tb < Db * Ta
这样排序下来就得到了拿走牛的顺序。
代码里为了实现方便(其实是不想从n - 1到1作循环),于是将 < 改成了 > ,只是为了好计算(因为后取的牛被计算多次)。
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int maxn = 100005;
int n;
struct _cow {
int t, d;
bool operator < (const _cow &x) const {
return t * x.d > x.t * d;
}
} cow[maxn];
inline int iread() {
int f = 1, x = 0; char ch = getchar();
for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return f * x;
}
int main() {
n = iread();
for(int i = 1; i <= n; i++) cow[i].t = iread(), cow[i].d = iread();
sort(cow + 1, cow + 1 + n);
LL pre = cow[1].d, ans = 0;
for(int i = 2; i <= n; i++) {
ans += pre * cow[i].t * 2;
pre += cow[i].d;
}
printf("%I64d\n", ans);
return 0;
}