高中数学:三角函数公式汇总及推导

本文详细介绍了三角函数的定义,基本关系、诱导公式,以及关键的三角恒等变换如两角和差公式、辅助角公式、二倍角公式等,强调了记忆和推导顺序的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、定义

在这里插入图片描述
常用三角函数值
在这里插入图片描述
参考:
三角函数定义

二、基本三角函数及相互关系

sinx
在这里插入图片描述
cosx
在这里插入图片描述
tanx
在这里插入图片描述
cscx
在这里插入图片描述
secx
在这里插入图片描述
cotx
在这里插入图片描述
函数间相互关系
在这里插入图片描述
参考:
cosx、sinx、tanx的函数图像与性质
secx、cscx、cotx函数图像及相关关系

三、诱导公式

口诀:奇变偶不变,符号看象限
在这里插入图片描述在这里插入图片描述在这里插入图片描述
参考:
同角与异角的三角函数关系

四、三角恒等变换(重点,含推导过程)

第四节的学习,需要在前三节的基础知识的铺垫下进行。

1、两角和差公式

此处,只需要记住sinx和cosx的2组公式。tanx的和差公式可以用sinx和cosx推导得出。
在这里插入图片描述
tan(α-β)的推导
在这里插入图片描述
参考:
两角和差公式

2、辅助角公式

记住第一个即可
在这里插入图片描述
参考:
辅助角公式

3、二倍角公式

在这里插入图片描述

4、半角公式(包含降幂公式)

降幂必升角,降角必升幂
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

5、万能公式

在这里插入图片描述在这里插入图片描述在这里插入图片描述

6、和差化积与积化和差公式

积化和差
在这里插入图片描述在这里插入图片描述

和差化积
在这里插入图片描述在这里插入图片描述在这里插入图片描述

五、推导顺序总结

在这里插入图片描述
所以,总共需要记住的公式有以下7个
同角三角函数的基本关系:记住2个
两角和差公式:记住4个
辅助角公式:记住1个
其它公式就可以推算出来!

### 回答1: 单元刚度矩阵是有限元分析中的一个重要概念,用于描述单元内部的物理特性和材料性质。下面是一个简单的C语言函数,用于计算一维杆单元的刚度矩阵。 ```c void getElementStiffnessMatrix(double E, double A, double L, double* k) { double k_val[2][2] = {{E*A/L, -E*A/L}, {-E*A/L, E*A/L}}; for(int i=0; i<2; i++) { for(int j=0; j<2; j++) { k[i*2+j] = k_val[i][j]; } } } ``` 其中,E表示弹性模量,A表示截面积,L表示单元长度,k是一个指向长度为4的数组的指针,用于存储刚度矩阵的值。这个函数会计算一个2x2的刚度矩阵,并将其存储在k数组中,其中k[0]表示第一行第一列的元素,k[1]表示第一行第二列的元素,以此类推。这个函数可以根据需要进行修改,以适应不同类型的单元和不同的材料性质。 ### 回答2: 单元刚度矩阵是在有限元分析中使用的一个重要工具,它用于描述物体在应力作用下的刚度特性。在编写单元刚度矩阵时,需要考虑几个关键因素。 首先,我们需要确定所需的单元类型,例如梁单元、块单元或平面单元。不同类型的单元有不同的几何形状和约束条件,因此在编写单元刚度矩阵时需要注意相应的几何参数和边界约束。 其次,单元刚度矩阵的编写涉及到计算单元的刚度系数,这些系数反映了物体在受力时的刚度特性。确定刚度系数的方法主要通过斯特拉斯解法或解析法。斯特拉斯解法通常涉及到将物体分割成单元,在每个单元上进行刚度矩阵的计算,再进行组装以得到整体刚度矩阵。解析法则通过使用适当的数学公式和物理规律直接计算刚度矩阵。 最后,还需考虑材料的弹性特性。刚度矩阵的编写需要使用材料的弹性模量和泊松比等参数。这些参数通常需要通过材料力学测试或其他已知的方法获得。 总之,在编写单元刚度矩阵时需要考虑单元类型、几何约束、刚度系数计算方法以及材料弹性特性等因素。合理编写刚度矩阵可以帮助我们准确地描述物体在受力时的刚度特性,为有限元分析提供可靠的依据。 ### 回答3: 单元刚度矩阵是在有限元分析中用于描述单元内各节点受力和位移之间关系的矩阵。在编写单元刚度矩阵的过程中,首先需要确定单元的几何形状和材料性质,以及边界条件。下面是编写单元刚度矩阵的一般步骤: 1. 构建单元刚度矩阵的初始形式:根据单元的几何形状和材料性质,可以推导出单元的刚度矩阵的初始形式。对于常见的单元类型,如杆单元、梁单元和三角形单元,其初始刚度矩阵通常是已知的。 2. 将初始形式转化为全局坐标系:将初始刚度矩阵的局部坐标系转化为全局坐标系。这需要考虑到单元的位移和旋转矩阵。 3. 考虑边界条件和节点约束:将边界条件和节点约束应用到全局刚度矩阵中。这将导致一些行和列被清零,以反映具有约束自由度的节点。 4. 汇总单元刚度矩阵:将所有单元的刚度矩阵汇总成总体刚度矩阵。这需要将每个单元的刚度矩阵根据其节点的自由度索引插入到总体刚度矩阵中的相应位置。 5. 解决线性方程组:根据边界条件,将总体刚度矩阵进行约减,得到一个由未知位移组成的线性方程组。通过求解这个线性方程组,可以得到每个节点的位移和应力。 编写单元刚度矩阵需要对结构和有限元方法有深入的了解,并使用适当的数学推导和程序计算。这是有限元分析的核心内容之一,对于解决各种结构和工程问题具有重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值