在人类文明的浩瀚长河中,桥梁——始终扮演着跨越天堑的沉默见证者。它们不仅是钢铁与混凝土铸就的交通纽带,更是每个时代科技与艺术交融的智慧结晶。随着桥梁的设计与建造技术不断进步,一个关乎永恒的命题开始如影随形——如何守护这些跨越时空的巨人?从匠人手持卡尺的人工检测,到无人机桥梁检测编队编织的数字罗网,桥梁检测技术作为确保桥梁安全的关键环节,正以颠覆性姿态,完成从"望闻问切"到"量子把脉"的世纪蜕变。
人工检测时代(1900s-1950s)
20世纪初期,土木结构的损伤检测主要是对结构缺陷原因的分析和修补方法的研究,也就是说,桥梁检测工作大多采用以人工目测为主的传统方法,依靠工程师的肉眼观察和经验判断,重点关注表面可见的裂缝、变形、腐蚀等缺陷[1]。
工程师使用裂缝显微镜(精度0.1mm)、回弹仪(混凝土强度检测)、吊篮等工具,也就是大家常说的老工程师"三件套":“放大镜看裂缝,听音锤判空鼓,笔记本记数据。”在条件有限的情况下,这种方法虽然成本低、操作简单,但受限于主观性,难以发现内部损伤或微小缺陷,其裂缝漏检率>25%,数据不仅无法量化对比,且日均检测面积不足50㎡,检测周期长达数月。
工具 | 检测对象 | 精度极限 | 致命缺陷 |
裂缝显微镜 | 表面裂缝 | 0.1mm | 无法检测内部缺陷 |
回弹仪 | 混凝土强度 | ±15% | 受表面碳化层干扰 |
吊篮+卷尺 | 桥墩垂直度 | 1cm/m | 高空作业伤亡率高达2.3‰ |
传统桥梁人工检测工具优劣势
桥梁的“生命守护者”们
1957年南京长江大桥建设中,苏联专家引入首台超声波探伤仪,开启中国检测设备启蒙期,但核心仪器仍依赖进口。
松花江-65-1型声阻探伤[2]
1958年,南京长江大桥建设现场,一群工程师徒手攀爬30米高的桥墩,用放大镜一寸寸寻找裂缝。汗水浸透的工装、布满老茧的双手,构成了那个时代桥梁检测的剪影。这不仅是新中国在没有任何外国建筑师帮助下自行设计和建造的首座现代化大桥,也是桥梁检测行业在荒芜中播种科技火种的起点。
南京市五万多军民举办大会欢庆南京长江大桥铁路桥通车
机械化转型期(1960s-1990s)
技术突破:从人力到机械的跨越
20世纪60年代,意大利BARIN公司于60年代率先推出折叠臂式和桁架式检测车,该桥梁检测车可近距离探查桥梁底部及侧面结构,显著降低人工攀爬风险,通过模块化平台设计扩展作业范围,成为后续检测车标准化设计的雏形。
在此阶段,液压驱动与电子仪器的结合虽不完善,但为后续技术迭代(如国产徐工桁架式检测车、现代智能传感器)提供了核心设计范式。
中国自主化的艰难跋涉
20世纪80年代末,国内开始尝试通过改造汽车起重机(如QY-8型)实现桥梁检测功能,但因技术不成熟均告失败。此阶段依赖进口设备,欧美企业(如奥地利帕尔菲格、德国MOOG)主导市场,其检测车采用液压驱动和车载式设计,但因价格高昂且难以适应国内需求,人工检测依旧是国内桥梁检测的主流。
1995年,徐工集团联合西安公路交通大学、河南省公路局,成功研制XZJ5140JQJ10型折叠臂式桥梁检测车,填补国内空白,标志着我国桥梁检测车打破欧美技术垄断,正式进入自主化阶段,为后续国产检测车研发奠定基础。
桥梁检测车(现代)
这一阶段虽然使得桥梁检测从人工逐步过渡为机械检测,其检测周期也从数月缩短至数周,但根据行业统计显示,当时高空坠落事故率仍达0.8‰,居高不下的事故率以及机械故障,也为后续数字化时代的全面革新埋下了伏笔。
数字化革命期(2000年-2020年)
21世纪初期,三维激光技术、无人机技术及卷积神经网络等多个技术的大幅突破,开始让桥梁检测从机械时代走向数字化时代。
三维激光技术的技术突破
三维激光技术,作为继GPS空间定位系统之后又一项测绘技术新突破,可以快速、大量的采集空间点位信息,为快速建立物体的三维影像模型提供了一种全新的技术手段。由于其具有快速性,不接触性,实时、动态、主动性,高密度、高精度,数字化、自动化等特性,相对于传统的单点测量,三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破[3]。
无人机与AI技术崛起期
自2010年伊始,以苏通长江公路大桥(主跨1088米)为代表的部分大型桥梁,开始试验性采用无人机航拍技术对桥塔、缆索等高危区域进行检测。
早期无人机搭载的摄像头分辨率仅为200万像素级,难以清晰识别0.5mm以下的微裂缝,仍需依赖人工攀爬复核,再加上无人机需在风速低于5级的环境下运行,且钢缆表面强反射光易干扰成像,导致检测窗口期短、数据可用性不足,也由此并未规模化投入使用。直到2018年杭州湾跨海大桥试点无人机巡检桥下空间,2020年正式纳入日常检测体系。
爬壁机器人减少高危作业
在此阶段,爬壁机器人与爬索机器人开始试验性用于斜拉索检测,虽受限于电池续航和稳定性,但也绝大程度上减少了人工高危作业的风险。
爬索机器人检测斜拉桥钢索
2017年起,针对斜拉桥钢索表面锈蚀检测、悬索桥主缆缠包带破损检查等人工高危作业场景,国内首次在张家界大峡谷玻璃桥、南京大胜关长江大桥等项目中试验性应用永磁吸附式爬壁机器人。早期设备搭载多光谱成像传感器,可识别0.2mm级裂缝,单次作业覆盖高度达120米,减少80%的人工高空攀爬风险
爬壁机器人墙面检测
深度学习算法的精准化突破
2015年,德国弗莱堡大学团队提出U-Net卷积神经网络,该技术最初并非直接用于桥梁裂缝识别,而是面向生物医学图像分割,但这一模型因其创新架构和高效性能,成为后来桥梁裂缝检测领域的重要技术基础,并推动了相关研究的快速发展。
U-Net卷积神经网络框架图
桥梁裂缝识别与生物医学图像分割存在以下共性:
目标形态的复杂性:裂缝与细胞边界均呈现不规则、多尺度特征。
背景干扰:桥梁表面纹理复杂(如混凝土颗粒、污渍),类似生物医学图像中的噪声。
像素级精度需求:裂缝宽度、走向等参数对结构安全评估至关重要,需亚毫米级检测。
2020年,李刚团队在隧道裂缝检测中引入U-Net与交替更新的Clique卷积神经网络,实现了自动像素级分割,准确率较传统方法提升20%[4]。
智能全面应用(2021年-至今)
2021-2025年,桥梁检测技术从人工高危作业转向智能化协同体系,形成“无人机初筛-机器人复验-激光建模”的全流程解决方案。技术迭代使检测效率提升3-5倍,综合成本下降40%,推动行业从“周期性检查”向“预防性维护”转型。
数字孪生体技术的突破
2023年数字孪生体技术开始趋于成熟,桥梁寿命预测精度突破99%。数字孪生技术最早可追溯至2002年,美国密歇根大学教授Michael Grieves提出“物理产品与虚拟模型双向映射”概念,但受限于技术条件,初期主要应用于航空航天领域,尚未进入桥梁工程领域,2010年后,随着BIM(建筑信息模型)技术普及,桥梁领域开始尝试三维可视化建模,但因缺乏实时数据交互能力,在此阶段数字孪生仍以静态模型为主。
直到2020后,由于物联网和传感器技术的等多个核心技术的不断突破,开始推动推动数字孪生进入动态数据融合阶段,由此,数字孪生技术在完成“感知-分析-决策”闭环后,开始逐步实现从“以虚仿实”到“虚实共生”的跨越。
无人机桥梁检测技术完成升级
早期的无人机技术在桥梁检测应用时因分辨率不足、抗风能力弱,精度不足等问题备受局限。但因行业技术发展,2022年起,无人机搭载6000万像素摄像头、激光雷达及红外热成像模块,实现裂缝识别精度达0.2mm,单架次覆盖检测面积提升至5,000平方米[5]。
无人机桥梁检测优势
- 桥下空间巡查
无人机搭载高清相机对桥下区域进行快速巡查,仅需5分钟即可完成1000多米范围的检查,大幅提升效率和安全性。
- 高空结构检测
无人机协同爬索机器人,负责桥塔、斜拉索等高空区域的病害识别,通过AI算法自动检测裂缝、涂层剥落等问题,生成可溯源的三维数字模型。
- 全桥动态监控
结合视频孪生技术,无人机参与构建车道级交通管理系统,实现全桥动态监控,事故检测率达99%,预警响应时间缩短至10秒内。
- AI技术应用
通过AI大模型深度学习和多传感器融合算法,AI诊断系统能自动筛选识别病害点,检测周期大幅缩短。
而在2025年的今天,因AI技术的不断发展,无人机桥梁检测现已实现全自动航线规划、多传感器协同作业与缺陷实时分析一体化,单日覆盖面积达20km²。通过融合三维建模与深度学习算法,系统可针对复杂桥梁结构自动生成最优巡检路径,并基于实时影像数据完成裂缝、锈蚀等病害的毫米级定位。可以说,无论是在成本上,检测效率上,还是高空安全上,无人机桥梁检测技术作为“低空经济”的代表,或已成为现阶段桥梁检测行业的标杆级解决方案。
技术类型 | 检测效率 | 成本构成 |
桥梁检测车 | - 覆盖范围广:可检测桥面、桥底全结构 | - 设备成本高:单台采购价约800-1200万元 |
三维激光扫描 | - 数据精度高:亚毫米级建模,单日完成200米桥梁扫描 | - 硬件成本高:激光雷达系统单套约300万元 |
无人机巡检 | - 作业速度快:单架次完成1km桥梁检测,效率较人工提升5倍 | - 初期投入低:基础无人机+传感器约50万元 |
桥梁不会老去,只会进化
当1923年工程师用铅垂线丈量金门大桥缝隙时,或许不曾预见,百年后的今天,无人机正以0.1毫米级精度解析杭州湾跨海大桥的安全密码。从肉眼看诊到数字透视,从依赖人工到“空-地-缆”立体智能检测,桥梁检测技术百年跃迁的本质,是人类用AI之眼突破生理极限的史诗之旅。
当毫米级精度的云端算法开始替代安全绳上的心跳声,当巡检速度从人工日均检测300米到AI系统极速分析病害影像,我们不禁要问:这场始于安全需求、兴于效率革命、终于智能AI的技术长征,是否正在重新定义'基础设施生命守护者'的职业图景?欢迎在评论区分享您亲历的桥梁检测技术迭代故事,或预测2050年的桥梁会向巡检无人机'汇报'哪些健康数据?
参考文献:
[1].无损检测NDT,听前辈讲50年前那次中国无损检测盛会的故事,2017
[2].Xutao Sun, S. Ilanko et al. “A Review on Vibration-Based Damage Detection Methods for Civil Structures.” Vibration(2023).. Xutao Sun, Sinniah.
[3].百度百科,三维激光扫描仪
[4].Gang Li, Biao Ma et al. “Automatic Tunnel Crack Detection Based on U-Net and a Convolutional Neural Network with Alternately Updated Clique.” Sensors (Basel, Switzerland)(2020).
[5].TATA小松鼠奇谈,惊鸣无人机解决方案:实现桥梁梁底高精度定位与缺陷检测新突破
*免责声明
本文图片均源自网络,如有侵权,请联系删除