caffe中forward过程总结 2

    前面http://blog.csdn.net/buyi_shizi/article/details/51504276 总结的是caffe有和卷积有关的forward过程,下面我们总结一下卷积之后和全连接网络Inner Product Layer有关的forward过程。

  1. 第一层Inner Product void InnerProductLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top):
    这层的输入是50x4x4,总共有800个输入,而输出的宽度是500,所以该层有500个神经元分别与输入进行全连接,每个神经元都有自己的权值向量,所以关于权值就有500x800个,还有就是该层一个batch中有64个样本。和前面卷积层类似,我们要做的就是用一次矩阵运算,得出关于各个神经元输入和权值矩阵相乘的结果。在caffe中矩阵的构造如下图所示:

    第一个矩阵表示输入数据,总共有64个50x4x4=800的数据;第二个矩阵表示权值矩阵,可以看出对于每一个神经元,都分别有800个权值参数,而500个神经元就有800x500个权值参数;第三个矩阵就是输出矩阵,对应一个batch中的64个样本,每个样本的宽度是500。bias的矩阵运算这里我们就不说了。
  2. 激活函数层void ReLULayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top):
    传统神经网络的每一层都有一个activation function,caffe中是把加权求和和激活函数分为两层,激活函数层就比较简单了,这一层激活函数层的输入是64x500,对应的输出也是64x500,所做的运算就是用relu函数对输入做个运算,关于为什么选取relu函数,这有很多考虑,这里暂且不深究。
  3. 第二层Inner Product void InnerProductLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top):
    这层Inner Product的输入宽度是500,同时有64个样本;输出宽度是10,同时也有64个样本。和上面一样,我们也想用一次矩阵运算,得到64个样本的加权求和结果。矩阵的构造和上面也是类似的:

    第一个矩阵表示输入,数据宽度500,总共64个样本,所以矩阵就是64x500;第二个矩阵表示权值矩阵,该层有10个神经元,用样,每个神经元和输入都是全连接,所以该层的权值参数总共有500x10个;第三个矩阵就表示最后的输出,输出宽度为10,样本数量为64;
  4. 激活函数层void SoftmaxWithLossLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top):
    这一层的激活函数就比较特殊,因为该层采用了softmax回归,关于softmax在另一篇总结中有介绍,该激活函数把该层的10个输入看成是输入在每个标签上的打分,分数越高,说明输入越有可能输入对应的标签;而该层的输出是输入输入对应标签上的概率,该层可以分为两步,
    第一步是利用该层的子层:softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_)获取输入在对应标签上的概率,关于输入是如何转化称概率的在softmax的总结中有介绍。
    第二部是求取代价函数,代价函数其实对应的就是输入在正确标签上的概率,只不过为了计算和后面的优化简便取了log元算,我们的目的就是让输入在正确的标签上的概率最大,程序如下:
    for (int i = 0; i < outer_num_; ++i){ // sample by sample 
        for (int j = 0; j < inner_num_; j++) {
          const int label_value = static_cast<int>(label[i * inner_num_ + j]);
          if (has_ignore_label_ && label_value == ignore_label_) {
            continue;
          }
          DCHECK_GE(label_value, 0);
          DCHECK_LT(label_value, prob_.shape(softmax_axis_));
          loss -= log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
                               Dtype(FLT_MIN)));  // cost function
          ++count;
        }
      }

    loss就是我们最终求取的代价函数。outer_num_对应的就是我们的样本数,意思就是我们会连续对一个batch中的64个样本求取代价函数,然后求取平均值作为这一次farward迭代的代价函数值。
    至此,forward过程就结束了,接下来就是利用求取的代价函数再进行backward求取代价函数相对于网络中每一个参数的梯度,然后利用梯度更新权值。本文是以lenet网络训练为例,其他网络的forward过程和本文总结的大同小异,只是层数不同或者激活函数不同而已。
  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值