GPGPU与GPU编程的区别及示例代码

445 篇文章 60 订阅 ¥29.90 ¥99.00
GPGPU专注于利用GPU的并行计算加速通用任务,如科学计算和机器学习;而GPU编程侧重图形渲染。GPGPU采用CUDA或OpenCL编程模型,GPU编程依赖OpenGL/DirectX和着色器语言。文中通过CUDA向量相加的示例,展示了GPGPU编程的基本流程。
摘要由CSDN通过智能技术生成

GPGPU(General-purpose computing on graphics processing units)是一种利用图形处理单元(GPU)进行通用计算的技术。GPU(Graphics Processing Unit)是一种专门设计用于处理图形和图像数据的硬件设备。虽然GPGPU和GPU都涉及使用GPU进行计算,但它们之间存在一些重要的区别。

区别1:目标

  • GPGPU的主要目标是利用GPU的并行计算能力来加速通用计算任务。它将GPU作为一种计算设备来使用,可以在广泛的领域中进行并行计算,例如科学计算、机器学习、密码学等。
  • GPU编程通常用于图形和图像处理,旨在提供高性能的图形渲染和图像处理功能。 GPU编程主要关注于图形渲染、光照、纹理映射等与图形相关的任务。

区别2:编程模型

  • GPGPU使用通用的并行编程模型,例如CUDA(Compute Unified Device Architecture)或OpenCL(Open Computing Language)。这些编程模型允许开发人员在GPU上编写并行计算的代码,以实现高效的计算加速。
  • GPU编程通常使用图形API(例如OpenGL或DirectX)和着色器语言(如OpenGL着色器语言或HLSL),这些语言主要用于图形渲染和图像处理。
<
mic与gpu对比,GPGPU与MIC定位相似,两者都是相对于CPU具有较高性价比的高性能解决方案,甚至连外形都是一样使用PCI-E插槽的板卡。但对于“核”这个概念来说,两者却有很大的不同。GPGPU中所说的核,以CUDA为例,是指一个SP(即流处理器),SP的功能只有计算,以NVIDIA的Fermi GPU为例,32个SP组成一个SM(流处理器群),一个SM 才有两个控制单元。也就是说每16个GPU的“核”,必须执行同一条指令。而MIC得设计思路与GPGPU完全不同。MIC的每个“核”,可以简单看作一个X86核心,也就是与现有PC机或小型服务器上的CPU核心相同的核。因此MIC编程可以最大限度地沿袭已有CPU上的并行程序,甚至可以一定程度上认为MIC上的每个“核”都是独立的节点,亦即将MIC作为一个超小型的集群。MIC的“核”虽然是x86架构,虽然单核的功能比GPGPU的核强大不少,但要指望单兵作战接近主流CPU,暂时还是不现实的。MIC依靠和GPGPU一样,靠人海战术。说起“人数”,GPGPU动辄上百核,MIC只有几十核,几十单核性能再强,在并行应用中也掀不起多少浪花。由于MIC的核心是Intel的CPU,核心数即使上不去了,Intel处理器可以超线程。在MIC上,每个核心能同时并发执行4个线程,而且这4个线程被Intel成为“硬件线程”,其性能大幅提升,几乎可以把每个线程看作真正的核心。因此,MIC“执行核”的数量,核GPGPU实际差不多。 另外,MIC采用了SMP结构,以一致性共享缓存为中心,这种设计使得MIC可以使用传统CPU的编程模型,而不需要针对性的硬件,设计新的程序结构。 MIC对现有程序改动之小还体现在编程简易性和工具方面。编程简易性上,MIC常用的offload模式只需要加上少数几条编译指导语句,就可以使程序利用MIC进行运算,而此时的程序源代码,是可以与传统的CPU程序共用的,减少了维护成本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值