大数据处理框架Spark:Spark On Yarn的两种模式总结

122 篇文章 ¥59.90 ¥99.00
本文总结了Spark与Yarn集成的两种模式:客户端模式和集群模式。客户端模式下,驱动程序在客户端运行,适合客户端资源充足的情况;集群模式下,驱动程序在集群内部节点运行,客户端仅负责提交作业。合理选择模式能优化资源利用,提升大数据处理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据处理框架Spark:Spark On Yarn的两种模式总结

Spark是一种快速且通用的大数据处理框架,可以在分布式环境中高效地运行。Spark提供了多种部署模式,其中一种常见的方式是将Spark与Yarn集成,以实现资源管理和作业调度。在本文中,我们将总结Spark On Yarn的两种模式:客户端模式和集群模式,并提供相应的源代码示例。

  1. 客户端模式(Client Mode)
    在客户端模式下,Spark驱动程序运行在客户端机器上,负责提交作业和与Yarn资源管理器进行通信。Yarn资源管理器负责分配和管理集群上的资源,并协调执行Spark任务。在这种模式下,客户端机器必须具备足够的计算和存储资源,以执行Spark作业的驱动程序。

以下是一个使用客户端模式提交Spark作业的示例代码:

from pyspark.sql import SparkSession

# 创建SparkSession对象
spark = Spar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值