BZOJ3242 快餐店【基环树直径】

题目描述:

一棵正权边基环树,在树上选一个点(可以在边上),使得所有节点到它的距离的最大值最小,输出最小值。
3<=n<=105

题目描述:

如果是一棵树,我们比较容易证明直径的中点就是最优点。

考虑在基环树中有什么变化,多出了一条边。如果我们断掉一条边求直径,得出一个距离 d 2 \frac d2 2d,显然这个距离是大于等于真实的所有点到这个直径中点的最大值的。

考虑答案的情形,假设最优点是 x x x,将所有点到 x x x的最短路径经过的边标记,那么基环树的环上至少有一条边不会被标记,所以删去这条边不会影响答案,当我们删去这条边时,最优点就是树的直径中点,所以答案>=直径二分之一,直径二分之一>=真实距离,而真实距离>=答案,所以答案就是此时直径的二分之一。

总的来说,我们枚举断掉一条边,求出直径,直径的二分之一一定大于等于答案,而答案一定会在枚举某条边时被计算到。

计算直径可以以1号点左右划分,用前后缀预处理然后端点相加,与每个子树中的直径取个max。摆一张图自行体会一下:
在这里插入图片描述

Code:

#include<bits/stdc++.h>
#define maxn 100005
#define LL long long
using namespace std;
int n,fa[maxn],dep[maxn],cir[maxn],D[maxn],m;
LL ans,f[maxn],g1[maxn],g2[maxn],h1[maxn],h2[maxn];
//f:maxdep  g:double chain  h:single chain
bool onc[maxn];
int fir[maxn],nxt[maxn<<1],to[maxn<<1],w[maxn<<1],tot;
inline void bothline(int x,int y,int z){
	nxt[++tot]=fir[x],fir[x]=tot,to[tot]=y,w[tot]=z;
	nxt[++tot]=fir[y],fir[y]=tot,to[tot]=x,w[tot]=z;
}
void findcircle(int u,int ff){
	dep[u]=dep[fa[u]=ff]+1;
	for(int i=fir[u],v;i;i=nxt[i]) if((v=to[i])!=ff){
		if(!dep[v]) findcircle(v,u);
		else if(dep[v]<dep[u])
			for(int j=u;;j=fa[j]) {onc[cir[++m]=j]=1;if(j==v) break;}
	}
}
void dfs(int u,int ff){
	for(int i=fir[u],v;i;i=nxt[i]) if((v=to[i])!=ff&&!onc[v]){
		dfs(v,u),f[v]+=w[i];
		ans=max(ans,f[u]+f[v]),f[u]=max(f[u],f[v]);
	}
}
int main()
{
	scanf("%d",&n);
	for(int i=1,x,y,z;i<=n;i++) scanf("%d%d%d",&x,&y,&z),bothline(x,y,z);
	findcircle(1,0);
	for(int i=1;i<=m;i++) dfs(cir[i],0);
	cir[m+1]=cir[1];
	for(int k=1;k<=m;k++)
		for(int i=fir[cir[k]];i;i=nxt[i]) if(to[i]==cir[k+1]) {D[k]=w[i];break;}
	LL sum=0,mx=f[cir[1]]+D[1];
	for(int i=2;i<=m;i++){
		sum+=D[i-1];
		h1[i]=max(h1[i-1],f[cir[i]]+sum);
		g1[i]=max(g1[i-1],f[cir[i]]+mx);
		mx=max(mx,f[cir[i]])+D[i];
	}
	sum=0,mx=f[cir[1]]+D[m];
	for(int i=m;i>1;i--){
		sum+=D[i];
		h2[i]=max(h2[i+1],f[cir[i]]+sum);
		g2[i]=max(g2[i+1],f[cir[i]]+mx);
		mx=max(mx,f[cir[i]])+D[i-1];
	}
	LL Ans=1ll<<60;
	for(int i=1;i<=m;i++) Ans=min(Ans,max(ans,max(max(g1[i],g2[i+1]),h1[i]+h2[i+1])));
	printf("%.1f\n",Ans/2.0);
}

在最短路问题中,这种计算 x x x,使得 A n s ∈ { x ∣ x ≥ A n s } Ans\in\{x|x\ge Ans\} Ans{xxAns}的思想很重要,应用也比较多。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值