[线段树优化 DP] BZOJ 3242 [Noi2013]快餐店

73 篇文章 0 订阅

一开始以为是环套树的直径 后来发现不对

其实做法差不多 暴力断开一条边 然后找树直径

这可以在环上建线段树优化


#include<cstdio>  
#include<cstdlib>  
#include<algorithm>  
using namespace std;  
typedef long long ll; 
  
inline char nc()  
{  
	static char buf[100000],*p1=buf,*p2=buf;  
	if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }  
	return *p1++;  
}  
  
inline void read(int &x)  
{  
	char c=nc(),b=1;  
	for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;  
	for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;  
}  
  
const int N=100005; 

struct point{
	ll f; int idx;
	point(ll f=-1LL<<60,int idx=0):f(f),idx(idx) { };
	bool operator < (const point &B)const{
		return f<B.f;
	}
};

typedef pair<point,point> abcd; 

inline abcd Min(abcd A,abcd B){
	if (B.first<A.first)
		return abcd(A.first,max(B.first,A.second));
	else
		return abcd(B.first,max(A.first,B.second));
};


struct SEG{
	abcd T[N<<4]; int M;
	inline void Build(int n,ll *a){
		for (M=1;M<n+2;M<<=1);
		for (int i=1;i<=n;i++)
			T[M+i]=abcd(point(a[i],i),point());
		for (int i=M-1;i;i--)
			T[i]=Min(T[i<<1],T[i<<1|1]);	
	} 
	inline abcd Query(int s,int t){
		abcd ret;
		for (s+=M-1,t+=M+1;s^t^1;s>>=1,t>>=1){
			if (~s&1) ret=Min(ret,T[s^1]);
			if ( t&1) ret=Min(ret,T[t^1]);
		}
		return ret;
	}
}Seg1,Seg2; 
  
struct edge{  
	int u,v,w,next;  
};  
  
edge G[N<<1];  
int head[N],inum=1;  
  
inline void add(int u,int v,int w,int p){  
	G[p].u=u; G[p].v=v; G[p].w=w; G[p].next=head[u]; head[u]=p;  
}  
  
int n; ll Ans,ans;  
int vst[N];  
int pnt,cir[N];
ll dis[N<<1],val[N<<1];  
  
#define V G[p].v  
inline int dfs(int u,int fa)  
{  
	vst[u]=1;  
	int ret=0,d;  
	for (int p=head[u];p;p=G[p].next)  
		if (p!=(fa^1) && vst[V]!=2)  
		{  
			if (vst[V]==1)   
			{  
				vst[u]=2; cir[++pnt]=u,dis[pnt]=G[p].w;  
				ret=V; continue;  
			}  
			d=dfs(V,p);  
			if (d)  
			{  
				vst[u]=2; cir[++pnt]=u,dis[pnt]=G[p].w;  
				if (d!=u) ret=d; else ret=0;  
			}  
		}  
	return ret;  
}  
  
ll g[N];  
  
inline void dfs2(int u,int fa){  
	for (int p=head[u];p;p=G[p].next)  
		if (V!=fa && vst[V]!=2)  
		{  
			dfs2(V,u);  
			ans=max(ans,g[u]+G[p].w+g[V]);  
			g[u]=max(g[u],G[p].w+g[V]);  
		}  
}  
  
int Q[N<<1],l,r;  
ll f[N<<1],sum[N<<1];  
  
inline ll dist(int u,int v){  
	return sum[v-1]-sum[u-1];  
}  

ll tmp[N<<1];
  
inline void Solve()  
{  
	for (int i=1;i<=pnt;i++) val[i+pnt]=val[i],dis[i+pnt]=dis[i];  
	for (int i=1;i<=pnt<<1;i++) sum[i]=sum[i-1]+dis[i];
	for (int i=1;i<=pnt<<1;i++) tmp[i]=val[i]-sum[i];
	Seg1.Build(pnt<<1,tmp);
	for (int i=1;i<=pnt<<1;i++) tmp[i]=sum[i]+val[i];
	Seg2.Build(pnt<<1,tmp);
	Ans=1LL<<60;
	for (int i=1;i<=pnt;i++){
		abcd a1=Seg1.Query(i,i+pnt-1),a2=Seg2.Query(i,i+pnt-1);
		if (a1.first.idx==a2.first.idx)
			Ans=min(Ans,max(ans,max(a1.first.f+a2.second.f,a2.first.f+a1.second.f)));
		else
			Ans=min(Ans,max(ans,a1.first.f+a2.first.f));
	}  
}  
  
int main()  
{  
	int iu,iv,iw;  
	freopen("t.in","r",stdin);  
	freopen("t.out","w",stdout);  
	read(n);  
	for (int i=1;i<=n;i++)  
		read(iu),read(iv),read(iw),add(iu,iv,iw,++inum),add(iv,iu,iw,++inum);  
	pnt=0; ans=0;  
	dfs(1,0);  
	for (int j=1;j<=pnt;j++) dfs2(cir[j],0),val[j]=g[cir[j]];  
	Solve();
	printf("%.1lf\n",Ans/2.0);  
	return 0;  
}  


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值