题目
棋盘
- (chess.cpp/c/pas)
- 1S
- 20 * 5’
- 传统
- 256MB
【问题描述】
有一个m × m的棋盘,棋盘上每一个格子可能是红色、黄色或没有任何颜色的。你现在
要从棋盘的最左上角走到棋盘的最右下角。
任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的),你只能向上、下、
左、右四个方向前进。当你从一个格子走向另一个格子时,如果两个格子的颜色相同,那你
不需要花费金币;如果不同,则你需要花费1 个金币。
另外,你可以花费2 个金币施展魔法让下一个无色格子暂时变为你指定的颜色。但这个
魔法不能连续使用,而且这个魔法的持续时间很短,也就是说,如果你使用了这个魔法,走
到了这个暂时有颜色的格子上,你就不能继续使用魔法;只有当你离开这个位置,走到一个
本来就有颜色的格子上的时候,你才能继续使用这个魔法,而当你离开了这个位置(施展魔
法使得变为有颜色的格子)时,这个格子恢复为无色。
现在你要从棋盘的最左上角,走到棋盘的最右下角,求花费的最少金币是多少?
【输入格式】
输入文件名为chess.in。
数据的第一行包含两个正整数m,n,以一个空格分开,分别代表棋盘的大小,棋盘上
有颜色的格子的数量。
接下来的 n 行,每行三个正整数x,y,c,分别表示坐标为(x,y)的格子有颜色c。
其中c=1 代表黄色,c=0 代表红色。相邻两个数之间用一个空格隔开。棋盘左上角的坐标
为(1, 1),右下角的坐标为(m, m)。
棋盘上其余的格子都是无色。保证棋盘的左上角,也就是(1,1)一定是有颜色的。
【输出格式】
输出文件名为chess.out。
输出一行,一个整数,表示花费的金币的最小值,如果无法到达,输出-1。
【输入输出样例1】
chess.in
5 7
1 1 0
1 2 0
2 2 1
3 3 1
3 4 0
4 4 1
5 5 0
chess.out
8
见选手目录下的chess/chess1.in 和chess/chess1.ans。
【输入输出样例1 说明】
(此处省略一张图片)
从(1,1)开始,走到(1,2)不花费金币
从(1,2)向下走到(2,2)花费1 枚金币
从(2,2)施展魔法,将(2,3)变为黄色,花费2 枚金币
从(2,2)走到(2,3)不花费金币
从(2,3)走到(3,3)不花费金币
从(3,3)走到(3,4)花费1 枚金币
从(3,4)走到(4,4)花费1 枚金币
从(4,4)施展魔法,将(4,5)变为黄色,花费2 枚金币,
从(4,4)走到(4,5)不花费金币
从(4,5)走到(5,5)花费1 枚金币
共花费8 枚金币。
【输入输出样例2】
chess.in
5 5
1 1 0
1 2 0
2 2 1
3 3 1
5 5 0
chess.out
-1
见选手目录下的chess/chess2.in 和chess/chess2.ans。
【输入输出样例2 说明】
(此处省略一张图片)
从(1,1)走到(1,2),不花费金币
从(1,2)走到(2,2),花费1 金币
施展魔法将(2,3)变为黄色,并从(2,2)走到(2,3)花费2 金币
从(2,3)走到(3,3)不花费金币
从(3,3)只能施展魔法到达(3,2),(2,3),(3,4),(4,3)
而从以上四点均无法到达(5,5),故无法到达终点,输出-1
【输入输出样例3】
见选手目录下的chess/chess3.in 和chess/chess3.ans。
【数据规模与约定】
对于 30%的数据,1 ≤ m ≤ 5, 1 ≤ n ≤ 10。
对于 60%的数据,1 ≤ m ≤ 20, 1 ≤ n ≤ 200。
对于 100%的数据,1 ≤ m ≤ 100, 1 ≤ n ≤ 1,000。
分析
记忆化深搜: Ans[i][j] 表示走到 (i,j) 时的最小代价,如果当前深搜到的代价 m≥Ans ,直接return,否则更新 Ans ,然后继续递归。
另外,使用魔法是不用递归两种颜色,贪心一下:直接变为和这个格子一样的颜色。如果变为不一样的颜色,一定不比变为一样颜色格子更优,分几种情况讨论即可得出。
代码
#include<cstdio>
#include<cstring>
#define MAXN 100
int Ans[MAXN+5][MAXN+5];
int Color[MAXN+5][MAXN+5];
int dir[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
int N,M;
void dfs(int x,int y,int m,bool f)//f为现在能不能用魔法,m为现在的代价
{
if(m>=Ans[x][y]) return;//一定要注意>=,否则会陷入死递归!!!
Ans[x][y]=m;//保存
for(int i=0;i<4;i++)
{
int tx=x+dir[i][0],ty=y+dir[i][1];
if(tx>M||ty>M||tx<1||ty<1) continue;
if(!Color[tx][ty])
{
if(f)//注意这里不能用&&连接两个条件,不然后面的else会出问题
//如果用&&连接,当color[tx][ty]=0且f=0时也会进入else
{
Color[tx][ty]=Color[x][y];
dfs(tx,ty,m+2,0);
Color[tx][ty]=0;
}
}
else if(Color[tx][ty]==Color[x][y]) dfs(tx,ty,m,1);
else dfs(tx,ty,m+1,1);
}
}
int main()
{
freopen("chess.in" ,"r", stdin);
freopen("chess.out","w",stdout);
scanf("%d%d",&M,&N);
for(int i=1;i<=N;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
Color[x][y]=c+1;
}
memset(Ans,0x7f,sizeof Ans);//初始化极大值
dfs(1,1,0,1);
if(Ans[M][M]==0x7f7f7f7f) printf("-1");
else printf("%d",Ans[M][M]);
}