一些有用的数学结论(持续更新)

# 1.染色问题

(1).环染色问题

①公式: f ( m ) = ( − 1 ) m ∗ ( n − 1 ) + ( n − 1 ) m f(m)=(-1)^m*(n-1)+(n-1)^m f(m)=(1)m(n1)+(n1)m

②证明:

2.矩阵

(1).邻接矩阵的幂

邻接矩阵的 i i i次方后的 a ( u , v ) a(u, v) a(u,v) 表示 u u u 在走了 i + 1 i + 1 i+1步后走到 v v v的方案总数(钛变态了)


证明
c [ i ] [ j ] c[i][j] c[i][j] = = = Σ a [ i ] [ k ] ∗ b [ k ] [ j ] ( j ≤ i ) \Sigma a[i][k] * b[k][j] (j \leq i) Σa[i][k]b[k][j](ji)
a [ i ] [ k ] a[i][k] a[i][k] 表示 i i i k k k 的方案总数, b [ k ] [ j ] b[k][j] b[k][j] 表示 k k k j j j 的方案总数
所以根据乘法原理即证。

(2).矩阵幂的和

在这里插入图片描述
在这里插入图片描述

(3).矩阵乘法代替图形变换

在这里插入图片描述

(4).广义矩阵是否有结合律。

矩阵运算为 x, y。要求 x, y 有结合律, x 对 y 有分配律

3.代数变换(消元降次)

(1).均值不等式

在这里插入图片描述

(2).错位相消经典题型

∑ i = 1 n i ∗ ( i + 1 ) \sum_{i = 1}^n i*(i+1) i=1ni(i+1)
= ∑ i = 1 n i ∗ ( i + 1 ) ∗ [ i + 2 − ( i − 1 ) ] i + 2 − ( i − 1 ) =\sum_{i = 1}^n \frac{i *(i + 1) * [i + 2 - (i - 1)]}{i + 2 - (i - 1)} =i=1ni+2(i1)i(i+1)[i+2(i1)]
= ∑ i = 1 n [ i ∗ ( i + 1 ) ∗ ( i + 2 ) − ( i − 1 ) ∗ i ∗ ( i + 1 ) ] 3 =\sum_{i = 1}^n \frac{[i * (i + 1) * (i + 2) - (i - 1) * i * (i + 1)]}{3} =i=1n3[i(i+1)(i+2)(i1)i(i+1)]
∵ \because 错位相消
= n ∗ ( n + 1 ) ∗ ( n + 2 ) 3 =\frac{n * (n + 1) * (n + 2)}{3} =3n(n+1)(n+2)

(3).裂项与和项

① 平方和公式

∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i = 1}^{n}i^2 = \frac{n(n + 1)(2n + 1)}{6} i=1ni2=6n(n+1)(2n+1)


证明:

T = ∑ i = 1 n i 2 T = \sum_{i = 1}^{n}i ^ 2 T=i=1ni2
∵ ( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 \because (n + 1) ^ 3 - n ^ 3 = 3n ^ 2 + 3n + 1 (n+1)3n3=3n2+3n+1
∴ ∑ i = 1 n ( i + 1 ) 3 − i 3 = 3 ∑ i = 1 n i 2 + 3 ∑ i n i + n \therefore \sum_{i = 1}^{n} (i + 1) ^ 3 - i ^ 3 = 3 \sum_{i = 1}^{n}i ^ 2 + 3 \sum_{i}^{n}i + n i=1n(i+1)3i3=3i=1ni2+3ini+n
又 ∵ ∑ i = 1 n ( i + 1 ) 3 − i 3 = ( n + 1 ) 3 − 1 又\because \sum_{i = 1}^{n} (i + 1) ^ 3 - i ^ 3 = (n + 1) ^ 3 - 1 i=1n(i+1)3i3=(n+1)31
∴ ( n + 1 ) 3 − 1 = 3 T + 3 ( n + 1 ) ∗ n 2 + n \therefore (n + 1) ^ 3 - 1 = 3T + 3 \frac{(n + 1) * n}{2} + n (n+1)31=3T+32(n+1)n+n
∴ T = n ( n + 1 ) ( 2 n + 1 ) 6 \therefore T = \frac{n(n + 1)(2n + 1)}{6} T=6n(n+1)(2n+1)

4.模拟退火相关常量

const double q = 0.996;
// 温度变动量

srand (998244353);
for (int i = 1; i <= 1000; i++)
	srand (rand ());
//种子初值

delta = ans1 - ans2;
if (exp (-delta / t) * RAND_MAX > rand ())
//选择概率

double cx = now.x + ((rand() << 1) - RAND_MAX) * t; 
//下一个随机点

5.计算几何

(1).知三角形三点坐标求面积

∣ ( y j − y i ) ⋅ ( x k − x i ) − ( y k − y i ) ⋅ ( x j − x i ) ∣ |(y_j-y_i)\cdot(x_k-x_i)-(y_k-y_i)\cdot(x_j-x_i)| (yjyi)(xkxi)(ykyi)(xjxi)
纵切法证明
在这里插入图片描述

Ⅱ 海伦公式

p = a + b + c 2 p = \frac{a+b+c}{2} p=2a+b+c

S = p ( p − a ) ( p − b ) ( p − c ) S = \sqrt{p(p-a)(p-b)(p-c)} S=p(pa)(pb)(pc)

6.位运算

枚举 i i i 的二进制真子集 (且不包括空集)

for (int j = i; --j &= i; )

等价于

for (int j = i - 1 & i; j; j = j - 1 & i)

枚举 i i i 的二进制子集 (且不包括空集)

for (int j = i; j; j = (j - 1) & i)

7.整数分块

l = n / (k + 1) + 1, r = n / k;
l = r + 1; r = n / (n / l);

8.阶乘

9.数论

(1).整除

⌊ ⌊ a b ⌋ c ⌋ = ⌊ a b c ⌋ \lfloor \frac {\lfloor \frac{a}{b} \rfloor}{c} \rfloor = \lfloor \frac{a}{bc} \rfloor cba=bca

g c d ( a i − b i , a j − b j ) = a g c d ( i , j ) − b g c d ( i , j ) gcd (a^i - b^i, a^j - b^j) = a^{gcd (i, j)} - b^{gcd (i, j)} gcd(aibi,ajbj)=agcd(i,j)bgcd(i,j)

(2).莫比乌斯系列

∑ d ∣ n μ ( d ) = { 0 , d = 1 1 , d ≠ 1 \sum_{d|n} \mu(d) = \begin{cases} 0, d = 1 \\ 1, d \neq1 \end{cases} dnμ(d)={0,d=11,d=1

10.排列组合

(1).1~9可以组成多少个不同的数

A n s w e r = ( ∑ i ∈ [ 1 , 9 ] n u m i ) ! / ( n u m 1 ! ∗ n u m 2 ! . . . . ∗ n u m 9 ! ) Answer = (\sum_{i\in[1,9]}{num_i})! / (num_1! * num_2!.... * num_9!) Answer=(i[1,9]numi)!/(num1!num2!....num9!)

(2).二项式反演

在这里插入图片描述
在这里插入图片描述

10.线性代数

(1).行列式

①:满秩的矩阵,行列式不为 0 0 0 (秩:最大线性不相关向量组大小)

②: ∣ A ∣ = ∣ A T ∣ |A| = |A^T| A=AT

③:拉普拉斯矩阵

拉普拉斯矩阵 L \mathcal{L} L n × n n \times n n×n 的一个矩阵
L i , i = d e g i L_{i,i} = deg_i Li,i=degi
L i , j = − n u m b e r _ o f _ e d g e ( i , j ) ( i ≠ j ) L_{i, j} = -number\_of\_edge (i, j)(i \neq j) Li,j=number_of_edge(i,j)(i=j)

将拉普拉斯矩阵去掉任意的一行和一列,得到的矩阵求行列式,即是原图的生成树数量。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值