Pytorch安装(Pycharm+AMD)

第二次安PyTorch了,这次电脑上没有anaconda了,也不想再安装一次,于是开始尝试。

python版本3.11,无NVIDIA


pip3 install torch torchvision torchaudio
  • 报错:找不到对应版本


ERROR: Could not find a version that satisfies the requirement torch (from versions: none)
ERROR: No matching distribution found for torch
  • 解决:原因是python版本太高,3.11目前还没有对应的pytorch安装包(只有3.10及以下的),目前python版本比较成熟的是3.9,于是再下一个3.9装进pycharm,编译器也切换为3.9

  • 确认一下版本:cmd里输入python -V,提示是3.9,版本切换成功。

  • 接着就是重新尝试下载。由于之前网络不好,下载失败多次,这次我学会了,找了个校园网最好的地方,输入pip命令,三分钟下好了。

  • 测试:

总结了一下,首先要保证版本对齐,其次是网络,网好一切都好!

### 如何在PyCharm中使用PyTorch进行深度学习开发 #### 创建或选择Python解释器 为了在PyCharm中配置适合于PyTorch的开发环境,需先创建或选择一个合适的Python解释器。这一步骤对于确保后续包安装顺利至关重要[^1]。 #### 配置并激活Conda环境 通过PyCharm内置的终端功能进入创建环境界面,在此之前应确认编辑页面右下角显示所期望使用的Python版本提示信息,比如`Python 3.8 (pytorch02)`。此时可利用该位置提供的链接快速访问终端以执行必要的conda命令来设置特定版本的CUDA工具链以及核心库如PyTorch、TorchVision和Torchaudio等组件[^2]。 #### 安装基础依赖项 一旦进入了正确的虚拟环境中,则可以通过运行如下所示的一条综合性的Anaconda指令完主要依赖关系的部署: ```bash conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch ``` 这条语句会自动处理好所有必需的基础软件包及其兼容性问题[^3]。 #### 扩展功能模块的手动加载 针对某些高级特性或是实验性质的功能扩展(例如图神经网络相关的操作),可能还需要额外下载预编译好的whl文件并将它们放置到项目的根目录之下;之后同样借助PyCharm自带的终端依次调用pip来进行这些自定义二进制分发版程序集的具体安装工作: ```bash pip install torch_cluster-1.6.0+pt113cu116-cp38-cp38-win_amd64.whl pip install torch_scatter-2.0.9-cp38-cp38-win_amd64.whl pip install torch_sparse-0.6.15+pt113cu116-cp38-cp38-win_amd64.whl pip install torch_spline_conv-1.2.1+pt113cu116-cp38-cp38-win_amd64.whl pip install torch_geometric ``` 上述过程能够有效补充和完善整个框架的能力范围,使其更适用于复杂场景下的研究与应用开发需求[^4]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值