平面直角坐标系中,图形围绕一点旋转一定的角度后各点坐标的变化
设图形旋转前的点为(x1,y1),旋转点为(x2,y2),旋转后的点为b(x,y),线段ab长度为r,与x轴的夹角为a。旋转角为b。则得
1、
x1 - x2 = rcosa
y1 - y2 = rsina
2、
x - x2 = rcos(a+b)
y - y2 = rsin(a+b)
由1、2可得
3、
x = x2 + (x1-x2)cosb - (y1-y2)sinb
y = y2 + (x1-x2)sinb + (y1-y2)cosb