使用遗传算法或者粒子群优化算法计算函数f(x1-x2-x3)=x1*x1-x1x2+x3的最大值

本文介绍了两种使用Python进行优化的方法,包括遗传算法和粒子群优化,来寻找函数f(x1-x2-x3)=x1^2-x1*x2+x3在约束条件x1-x2-x3∈[1,10]下的最大值及对应的x1-x2-x3取值。" 82224838,8003122,iOS高性能Key-Value持久化组件FastKV详解,"['ios开发', 'objective-c', 'key-value存储', '数据持久化', '性能优化']
摘要由CSDN通过智能技术生成

 

利用python构造遗传算法计算函数f(x1-x2-x3)=x1^2-x1*x2+x3的最大值以及函数f最大值时x1-x2-x3的取值x1-x2-x3∈[1,10].

方法一:

注意:需安装python第三方库:matplotlib或者numpy

import numpy as np

DNA_SIZE = 12
POP_SIZE = 200
CROSSOVER_RATE = 0.8
MUTATION_RATE = 0.005
N_GENERTATIONS = 30
X1_BOUND = [0, 10]
X2_BOUND = [0, 10]
X3_BOUND = [0, 10]


def F(x1, x2, x3):
    return x1 ** 2 - x1 * x2 + x3;


def translateDNA(pop):
    x1_pop = pop[:, :DNA_SIZE]
    x2_pop = pop[:, DNA_SIZE:-DNA_SIZE]
    x3_pop = pop[:, -DNA_SIZE:]

    x1 = x1_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE - 1) * (X1_BOUND[1] - X1_BOUND[0]) + X1_BOUND[
        0]
    x2 = x2_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE - 1) * (X2_BOUND[1] - X2_BOUND[0]) + X2_BOUND[
        0]
    x3 = x3_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值