四旋翼无人机运动控制(学习笔记)(一)

动力学建模

        四旋翼无人机本身为欠驱动系统,无法独立控制位置和姿态。通过控制无人机四个驱动电机的转速来控制产生的升力和力矩来改变无人机的姿态角,从而改变无人机的位置。无人机的升力和力矩与四个旋翼转速的关系式为:

\begin{bmatrix} f\\ \tau_x\\ \tau_y\\ \tau_z \end{bmatrix}=\begin{bmatrix} c_T & c_T & c_T &c_T \\ \frac{\sqrt{2}}{2}dc_T&-\frac{\sqrt{2}}{2}dc_T & -\frac{\sqrt{2}}{2}dc_T &\frac{\sqrt{2}}{2}dc_T \\ \frac{\sqrt{2}}{2}dc_T& \frac{\sqrt{2}}{2}dc_T & -\frac{\sqrt{2}}{2}dc_T & -\frac{\sqrt{2}}{2}dc_T\\ c_M&-c_M &c_M &-c_M \end{bmatrix}\begin{bmatrix} \omega_{1}^{2}\\ \omega_{2}^{2}\\ \omega_{3}^{2}\\ \omega_{4}^{2} \end{bmatrix} (1)

其中,f为无人机的升力,\tau_x,\tau_y,\tau_z分别为无人机各个轴的力矩,c_T为升力系数,c_M为反扭距系数,d为无人机的轴距,\omega_i为各个旋翼的转速。

        常见的四旋翼无人机动力学建模方法有牛顿-欧拉法和拉格朗日法。当无人机的姿态角变化变化不大即不会导致奇异性问题时,选用牛顿-欧拉法建立无人机动力学模型清晰易懂。本文将采用牛顿-欧拉法建立四旋翼无人机的动力学模型。

        定义机体坐标系B相对于惯性坐标系I的位置矢量为\boldsymbol p=\begin{bmatrix} x & y & z \end{bmatrix}^{\textrm{T}},欧拉姿态角为\boldsymbol{\mathit{\Theta}} =\begin{bmatrix} \phi & \theta & \psi \end{bmatrix}^{\textrm{T}},分别表示滚转角、俯仰角和偏航角。无人机姿态角采用X-Y-Z的形式表示,则机体坐标系B到惯性坐标系I的旋转矩阵可表示为:

\bold{R_{b}^{I}}=\boldsymbol{\mathrm{R_z\left ( \psi \right )}}\boldsymbol{\mathrm{R_y\left ( \theta \right )}}\boldsymbol{\mathrm{R_x\left ( \phi \right )}}\\= \begin{bmatrix} c\psi &-s\psi &0 \\ s\psi& c\psi & 0\\ 0& 0 & 1 \end{bmatrix}\begin{bmatrix} c\theta & 0 &s\theta \\ 0 & 1 & 0\\ -s\theta& 0 &c\theta \end{bmatrix}\begin{bmatrix} 1 & 0 & 0\\ 0 &c\phi & -s\phi\\ 0& s\phi &c\phi \end{bmatrix}\\= \begin{bmatrix} c\psi c\theta & c\psi s\theta s\phi - s\psi c\phi & s\phi s\psi + c\psi s\theta c\phi\\ s\psi c\theta & s\psi s\phi s\theta + c\psi c\phi &-s\phi c\psi + s\psi s\theta c\phi \\ -s\theta& s\phi c\theta & c\phi c\theta \end{bmatrix} (2)

为了简洁表示公式,本文将\mathrm{sin}记为s,将\mathrm{cos}记为c。

        无人机所受的力只有重力和自身产生的升力,由牛顿第二运动方程可得:

m\boldsymbol{\ddot{p}}=\boldsymbol G-f \boldsymbol e_3 (3)

其中,m为无人机的质量,\boldsymbol G为无人机的重力,\boldsymbol{e_3}是世界惯性坐标系下的单位向量\begin{bmatrix} 0 & 0 &1 \end{bmatrix}^{\textrm{T}}

        将式(3)化简并将升力转换到世界坐标系下表示可得到:

\boldsymbol{\ddot{p}}=g\boldsymbol{e_3}-\frac{f}{m}\bold{R_b^I}\boldsymbol{e_3}(4)

        将式(4)展开并将\bold{R_b^I},\boldsymbol{e_3}代入可得到:

\left\{\begin{array}{l} \ddot{x}=-\frac{f}{m}\left ( c\psi s\theta c\phi + s\psi s\phi \right )\\ \ddot{y}=-\frac{f}{m}(s\psi s\theta c\phi - c\psi s\phi)\\ \ddot{z}=g-\frac{f}{m}c\phi c\theta \end{array}\right.(5)

        无人机所受的力矩只有自身产生的力矩,由欧拉第二运动方程可得:

\bold J \dot{\boldsymbol{\omega_b}}+\boldsymbol{\omega_b}\times \bold J \boldsymbol{\omega_b}=\boldsymbol {G_a} + \boldsymbol \tau (6)

其中,\boldsymbol {\omega_b}为无人机在机体坐标系下的角速度,\bold J为无人机的对角转动惯量矩阵,\boldsymbol {G_a}为陀螺力矩。

        \bold J可表示为:

\bold J=\begin{bmatrix}J_{xx} &0 &0 \\0 & J_{yy}&0 \\0 & 0&J{zz} \end{bmatrix}(7)

        \boldsymbol {G_a}可表示为:

\boldsymbol{G_a}=\begin{bmatrix} G_{a,\phi}\\ G_{a,\theta}\\ G_{a,\psi} \end{bmatrix}=\begin{bmatrix} J_{RP}\omega_{yb}(\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4})\\ J_{RP}\omega_{xb}(-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4})\\ 0 \end{bmatrix}(8)

其中,J_{RP}表示整个电机转子和螺旋桨绕机体转轴的总转动惯量。

        将式(7-8)代入(6)中,化简后可得到:

\left\{\begin{array}{l} \dot{\omega}_{xb}=\frac{1}{J_{xx}}[\tau_{x}+\omega_{yb}\omega_{zb}(J_{yy}-J_{zz})-J_{RP}\omega_{yb}\Omega]\\\dot{\omega}_{yb}=\frac{1}{J_{yy}}[\tau_{y}+\omega_{xb}\omega_{zb}(J_{zz}-J_{xx})+ J_{RP}\omega_{xb}\Omega] \\ \dot{\omega}_{zb}=\frac{1}{J_{zz}}[\tau_{z}+\omega_{xb}\omega_{yb}(J_{xx}-J_{yy})]\end{array}\right.(9)

其中,\Omega=-\omega_1 +\omega_2 -\omega_3 +\omega_4

        角速度与欧拉角的变换率之间的关系为:

\begin{bmatrix} \omega_x\\ \omega_y\\ \omega_z \end{bmatrix}=\begin{bmatrix} 1 & 0 &-s\theta \\ 0&c\phi &c\theta s\phi \\ 0&-s\phi &c\theta c\phi \end{bmatrix}\begin{bmatrix} \dot{\phi}\\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}(10)

        在小扰动的情况下,即欧拉角的各个角度变化较小时,欧拉角的变化率与无人机在机体坐标系下的角速度近似相等,则可得到:

\begin{bmatrix} \dot{\phi}\\\dot{\theta} \\ \dot{\psi} \end{bmatrix}=\begin{bmatrix} \omega_{xb}\\\omega_{yb} \\ \omega_{zb} \end{bmatrix}(11)

        将式(11)代入式(9)并结合式(5),则最终四旋翼无人机的动力学模型可表示为:

\left\{\begin{array}{l} \ddot{x}=-\frac{f}{m}\left ( c\psi s\theta c\phi + s\psi s\phi \right )\\ \ddot{y}=-\frac{f}{m}(s\psi s\theta c\phi - c\psi s\phi)\\ \ddot{z}=g-\frac{f}{m}c\phi c\theta \\ \ddot{\phi}=\frac{1}{J_{xx}}[\tau_{x}+\dot{\theta}\dot{\psi}(J_{yy}-J_{zz})-J_{RP}\dot{\theta}\Omega]\\ \ddot{\theta}=\frac{1}{J_{yy}}[\tau_{y}+\dot{\phi}\dot{\psi}(J_{zz}-J_{xx})+ J_{RP}\dot{\phi}\Omega] \\ \ddot{\psi}=\frac{1}{J_{zz}}[\tau_{z}+\dot{\phi}\dot{\theta}(J_{xx}-J_{yy})] \end{array}\right.(12)

  • 9
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值