理解不变因子、行列式因子、初等因子

1、先导

理解行列式因子之前,我们先要了解它定义中的k阶子式是怎么求出来的。而行列式因子的引入是为了证明smith标准型的唯一性。

k阶子式

行列式任取k行k列的,k是任意取得,没有限制,(k行k列也就是说明行、列数相同就可以了,像我可以取第1、2行,列数可以取1、2列;列数也可以取2、3列,这两个也都是2阶子式)这些行列相交的公共元素,重新组合的新的行列式。以例子来说明加深理解。
A = ∣ 1 2 3 4 5 6 7 8 9 ∣ A=\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} A=147258369

(1)1阶子式

1 阶 子 式 有 : ∣ 1 ∣ 、 ∣ 2 ∣ 、 ∣ 3 ∣ 、 . . . ∣ 9 ∣ 取 完 行 列 式 中 的 全 部 元 素 。 1阶子式有:\begin{vmatrix} 1 \\ \end{vmatrix} 、 \begin{vmatrix} 2 \\ \end{vmatrix} 、 \begin{vmatrix} 3 \\ \end{vmatrix} 、... \begin{vmatrix} 9 \end{vmatrix} 取完行列式中的全部元素。 1123...9

(2)2阶子式

2 阶 子 式 有 : ∣ 1 2 3 4 ∣ ( 第 1 、 2 行 , 第 1 、 2 列 ) 、 ∣ 2 3 5 6 ∣ ( 第 1 、 2 行 , 第 2 、 3 列 ) 、 . . . 、 ∣ 5 6 8 9 ∣ ( 第 2 、 3 行 , 第 2 、 3 列 ) . . . 2阶子式有:\begin{vmatrix} 1&2 \\ 3&4\\ \end{vmatrix} (第1、2行,第1、2列)、 \begin{vmatrix} 2&3 \\ 5&6 \end{vmatrix} (第1、2行,第2、3列)、 ...、 \begin{vmatrix} 5&6 \\ 8&9 \end{vmatrix} (第2、3行,第2、3列)... 21324121225361223...58692323...
一直到取完全部的2阶行列式,全部的这些二阶行列式都是2阶子式。

(3)3阶子式

3阶子式就是该行列式。
依此类推到k阶子式。

主子式

行列式取k行k列,行(或列)的标号虽然可以任取(不需要按照间隔为1来取),但是列(或行)的标号要与行(或列)一致,即行列标号一样,例如行取1、3、6,列就得取1、3、6;行取2、3、5,列就得取2、3、5.

顺序主子式

也是在行列式中取k行k列,但是要从第1行第1列开始选,也就是说一阶顺序主子式只是第1行第1列构成的行列式;二阶顺序主子式只有第1、2行和第1、2列构成的行列式;三阶顺序主子式只有第1、2、3行和第1、2、3列构成的行列式,依此类推。
说明顺序主子式唯一。

2、不变因子

不变因子是将矩阵化成smith标准型后的对角线上的全部非0元素。smith标准型的化简是采用行和列变化,使其后一个对角线元素能整除前一个对角线元素。举个例子(下面的A、B矩阵都是数字矩阵的的λ-矩阵化成的,即λE-A、λE-B,这两个的λ-矩阵的λ的次数是和阶数一样的,都是3次)。
A ( λ ) = ( 1 0 0 0 λ − 1 0 0 0 ( λ − 1 ) ( λ − 2 ) ) , B ( λ ) = ( 1 0 0 0 λ − 1 0 0 0 ( λ − 2 ) 2 ) A(λ)=\begin{pmatrix} 1 & 0 & 0 \\ 0 & λ-1 &0 \\ 0 & 0 & (λ-1 )(λ-2 )\\ \end{pmatrix} ,B(λ)=\begin{pmatrix} 1 & 0 & 0 \\ 0 & λ-1 &0 \\ 0 & 0 & (λ-2 )^2 \\ \end{pmatrix} A(λ)=1000λ1000(λ1)(λ2),B(λ)=1000λ1000(λ2)2其中A(λ)是Smith标准型,因为(λ-1)(λ-2)能整除(λ-1),当然(λ-1)可以整除1;而B(λ)不是Smith标准型,因为 (λ-2)2不能整除 (λ-1)。当然不一定一开始的对角线元素就是1,也可以是λ的多项式(我举得这个C(λ)例子不是数字矩阵的λ-矩阵,因此λ的阶数不等于他的维数)。
C ( λ ) = ( λ − 1 0 0 0 λ − 1 0 0 0 ( λ − 1 ) ( λ − 2 ) ) C(λ)=\begin{pmatrix} λ-1 & 0 & 0 \\ 0 & λ-1 &0 \\ 0 & 0 & (λ-1 )(λ-2 )\\ \end{pmatrix} C(λ)=λ1000λ1000(λ1)(λ2)C(λ)这种也是smith标准型

3、行列式因子

定义:λ-矩阵A(λ)的全部的非零k阶子式的首项系数为1的最大公因式Dk (λ)称为k阶行列式因子。
不变因子和行列式因子的关系:不变因子di ,行列式因子Di 。d1 =D1 ,d2 =D2 /D1 …,dr =Dr /Dr-1
要是给出的矩阵是对角形式的,用行列式因子能很快的求解出不变因子,从而求出Smith标准型。举个例子: A ( λ ) = ( λ ( λ + 1 ) 0 0 0 λ 0 0 0 ( λ + 1 ) 2 ) A(λ)=\begin{pmatrix} λ(λ+1) & 0 & 0 \\ 0 & λ &0 \\ 0 & 0 & (λ+1)^2\\ \end{pmatrix} A(λ)=λ(λ+1)000λ000(λ+1)2
可见。非零1阶子式有λ(λ+1)、λ 、(λ+1)2 ,则最大公因式D1 =1;非零2阶子式有λ2(λ+1)、λ(λ+1)3 ,λ(λ+1)2 ,则最大公因式D2 =λ(λ+1);非零3阶子式有λ2(λ+1)3 ,则最大公因式D32(λ+1)3
因此我们可以求解第一个不变因子d1 =D1 =1;d2 =D2 /D1 =λ(λ+1);d3 =D3 /D2 =λ(λ+1)2 。故可化成Smith标准型为
( 1 0 0 0 λ ( λ + 1 ) 0 0 0 λ ( λ + 1 ) 2 ) \begin{pmatrix} 1 & 0 & 0 \\ 0 & λ(λ+1) &0 \\ 0 & 0 & λ(λ+1)^2\\ \end{pmatrix} 1000λ(λ+1)000λ(λ+1)2

4、初等因子

把不变因子中的常数项去掉,剩下的关于λ的因式进行分解,注意分解的因式是互不相同的(仅是针对同一个不变因子的)。例如:不变因子为1,λ,λ(λ-1),
则初等因子为λ,λ,λ-1;若是不变因子为1,1,(λ-1)3 ,则初等因子为(λ-1)3

5、参考

矩阵分析(第三版)史荣昌
k阶子式、主子式、顺序主子式的一些定义的参考
使用LaTeX写矩阵

  • 120
    点赞
  • 309
    收藏
    觉得还不错? 一键收藏
  • 17
    评论
行列式因子:对于一个n阶矩阵A,其行列式因子是由它的每个n-1阶子阵的行列式组成的。在Matlab中,可以使用det()函数来计算一个矩阵行列式因子不变因子:对于一个n阶矩阵A,其不变因子是由它的所有n阶子阵行列式的最大公约数组成的。在Matlab中,可以使用inv()和rank()函数计算出A的所有子阵,然后使用gcd()函数来计算它们的最大公约数。 初等因子:对于一个n阶矩阵A,其初等因子是由它的所有n阶子阵行列式的有理标准式的非零因子组成的。在Matlab中,可以使用poly()和roots()函数来计算一个矩阵的所有有理标准式,并使用nnz()函数来统计非零因子的数量。 Smith标准型:对于一个m x n矩阵A,其Smith标准型是一个(m x m)的对角矩阵D和一个(n x n)的对角矩阵E,使得A = PDE,其中P和Q是可逆矩阵。在Matlab中,可以使用smithForm()函数来计算一个矩阵的Smith标准型。 Jordan标准型:对于一个n阶矩阵A,其Jordan标准型是一个形如J = diag(J1, J2,..., Js)的分块对角矩阵,在每个块内部都是一个上三角矩阵和若干个对角块的组合。在Matlab中,可以使用jordan()函数来计算一个矩阵的Jordan标准型。 最小多项式:对于一个n阶矩阵A,其最小多项式是一个最低次数的不可约多项式p(x),使得p(A) = 0。在Matlab中,可以使用polyfit()函数来拟合一个矩阵的所有特征值,并使用roots()函数来计算最小多项式的系数。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值