酉矩阵和次酉矩阵的定义
1、酉矩阵
定义:
若A是n阶复矩阵满足
AH A= A AH = E
则称A为酉矩阵,记做A∈Un×n .
性质:
1、A-1 =AH ∈Un×n
2、|A|=1
3、AT∈Un×n
4、AB, BA∈Un×n
一个充要条件:
复矩阵A是酉矩阵的充要条件是A的n个列向量是标准的正交向量。
可见,快速判断一个复矩阵是不是酉矩阵可以看它任意两个列向量是不是正交且单位的。
2、次酉矩阵
定义:
若α1 ,α2 ,…,αr 为n维标准正交列向量组,称n×r阶矩阵U1=(α1 ,α2 ,…,αr)
为次酉矩阵。记作U1∈Ur n×r .
充要条件:
U1为次酉矩阵的充要条件是U1H U1=Er
3、酉矩阵和次酉矩阵的异同
相同:
两种矩阵的列向量都是两两单位正交的
不同:
酉矩阵是方阵,而次酉矩阵不是方阵
参考:
矩阵分析(第三版)史荣昌