生成式 AI:通信服务提供商云转型的下一阶段

生成式人工智能正在对电信行业产生深远影响,通过强化客户交互、自动化网络管理和提升运营效率,助力CSP应对5G挑战。谷歌云提供的生成式AI服务可以在呼叫中心、个性化体验和自治网络等方面创造新价值,同时强调数据安全和质量的重要性。
摘要由CSDN通过智能技术生成

【本文由Cloud Ace 整理发布。Cloud Ace 是谷歌云全球战略合作伙伴,拥有 300 多名工程师,也是谷歌最高级别合作伙伴,多次获得 Google Cloud 合作伙伴奖。作为谷歌托管服务商,我们提供谷歌云、谷歌地图、谷歌办公套件、谷歌云认证培训服务。】

通信服务提供商 (CSP) 正处于一个转折点。从停滞不前的收入,到满足 5G 需求的网络压力,再到提供创新客户体验方面的挑战,电信行业面临着巨大的转型压力。

在过去几年中,全球的 CSP 已转向人工智能 (AI) 来应对其中的一些挑战,但运营商运营费用的绝大部分仍花在了基础设施和数据管理上。这限制了他们利用核心数据资产和开发满足个人需求的差异化客户体验的能力。

​进入生成式人工智能,这是一种机器智能,最近受到了极大的关注。我们都惊叹于它能够生成读起来像人写的文本、创建新图像,甚至构建乐谱的能力。它是 AI 工具集的一个引人入胜的补充,并且补充了机器学习 (ML) 及其识别模式以进行预测、发现效率或解释大型数据集的能力。

但是,尽管围绕生成式人工智能有很多炒作,但在谷歌云,我们通过电信行业更实用的视角来看待它。生成式 AI 可以加速已经在进行的转型,它有可能简化 CSP 日常使用的许多工具和流程,将人与计算机之间的自然交互提升到一个新的水平,并使机器能够通过编程来执行一项操作口头请求,并以自然、互动的方式做出回应。

生成式 AI 以现有的 Google Cloud 数据、AI 和 ML 服务为基础:

例如,呼叫中心 AI 在呼叫者和计算机之间进行类似人类的交互,已被 CSP 成功采用多年,提高了客户和呼叫中心工作人员的满意度。

当我们添加生成 AI 时对于这项技术,CSP 及其客户将看到更大的能力和影响,例如,虚拟代理不仅可以提供有用的信息,还可以让客户进行支付和执行其他交易。借助生成式 AI,CSP 将能够利用客户通话摘要更好地了解客户情绪并确定交叉销售和追加销售机会。

CSP 还可以轻松快速地构建和部署虚拟代理,这些虚拟代理通过客户对话提供信息,从而实现更具创新性和个性化的客户交互。而这仅仅是个开始。

三大重点领域

联络中心只是实用和生成 AI 将帮助推动新价值的领域之一。在反思当今 CSP 面临的主要挑战时,生成人工智能可能具有变革性的三个领域特别突出:

  1. 个性化体验:除了进一步改善客户呼叫中心交互之外,生成式人工智能还可以在电子商务交互中提供更好的个性化——这是帮助客户选择电话和通话计划的一个重要因素。个性化对于降低客户流失率、提供相关的新服务和管理客户生命周期也很重要。例如,生成式 AI 可以使 CSP 能够制作针对特定主题定制的营销活动内容,并使用定制的文本和图像定位个人客户。

  2. 自治网络:生成式 AI 还将通过将网络规划和运营中使用的多个复杂 AI/ML 模型与能够理解网络行为并在网络容量等领域制定行动计划的大型语言模型 (LLM) 连接起来,帮助为自治网络铺平道路规划和绩效。 例如,生成式 AI 将使 CSP 能够使用客户体验和情绪数据训练模型,以构建更好的预测能力。重要的是,用于调整这些模型的客户数据集不是公开的,而是经过整理的内部客户数据——显著增强了隐私性、真实性和相关性,同时保护了知识产权。此外,生成式人工智能将能够帮助网络规划和设计,这需要高水平的报告和分析。

  3. 简化运营:运营中心的正常运行时间和现场服务效率对于管理成本和提高客户满意度至关重要。特别是,将生成式 AI 应用于现场服务设备可以加快诊断和分析,甚至可以帮助进行安装、零件和故障排除,并最大限度地减少公司必须派出卡车的次数并改进现场服务培训。生成式 AI 还将提高 IT 开发流程的生产力,支持代码生成和故障排除,以提供可靠的软件产品和服务。

数据安全可靠

生成式 AI 中一个讨论不足的领域是数据质量和数据安全在构建和培训为该技术提供动力的 LLM 中的重要性。许多 CSP 担心知识产权会泄露进出 LLM,从而危及其系统和知识产权的安全。我们长期以来一直提供行业领先的数据安全和隐私技术,并且通过与Vertex AI集成的生成 AI ,我们可以确保所有数据在 CSP 环境中的安全。

与此同时,为了确保他们的 LLM 生成准确的信息,CSP 正在构建场景和用例,以在数量较少的、受控的他们自己的数据上进行培训,有时还伴随着来自合作伙伴和其他人的高度可信的来源。Google Cloud 还提供了 Prompt Engineering、Tuning 和 Reinforcement Learning from Human Feedback 等工具,以进一步确保数据的真实性和可靠性。这可能会导致第一个生成的人工智能应用程序针对更小、影响更大的问题,比如优化网络拓扑。

人为因素

当然,人对于生成 AI 的成功至关重要,无论是解决呼叫中心的问题、现场服务人员将 AI 信息与自己的专业知识相结合、营销和创意团队与生成 AI 集思广益以制作新的演示文稿和营销材料,还是运营工程师增加和批准 AI 建议。我们已经构建了许多惊人的技术来帮助增强人们无法做到的事情:合成数百万记录和资源,以帮助激发新的工作流程和生产力。

电信是一个瞬息万变的行业,精通技术,渴望学习和部署最好的新技术,其中包括生成人工智能。每次与 CSP 的会面都会激发新的想法,激发更多的用例,并带来更多改变行业的举措。看到这种变化速度令人兴奋,而我们才刚刚开始。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值