牛顿迭代法求简单超越方程根的原理及python实现

牛顿迭代法原理很简单,就是把f(x)x_0一阶泰勒展开,即f(x)\approx f(x_0)+f^ {'}(x_0)(x-x_0)

注意这里是近似相等。所以f(x)=0的解近似f(x_0)+f^{'}(x_0)(x-x_0)=0的解,即x=x_0-f(x_0)/f^{'}(x_0),在这里先浅浅理解一下x_0x的意义,我们首先猜测f(x)=0的解是x_0,然后我们用上述近似得到了一个更接近真实解的解x,那么一个迭代公式便产生了:x_{k+1}=x_{k}-f(x_k)/f^{'}(x_k),迭代到一定程度我们就认为我们求出了f(x)=0的解。

下面是python代码,注意tol不能太小。

    import math

    def f(x):
        return f(x)表达式

    def df(x):
        return dfx(x)表达式

    def newton_solve(func, dif, x0):
        tol = 1e-9
        fx = func(x0)
        dfx = dif(x0)
        x1 = x0 - fx / dfx
        while abs(x1 - x0) > tol:
            x0 = x1
            fx = func(x0)
            dfx = dif(x0)
            x1 = x0 - fx / dfx
        return x1

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
牛顿是一种用于方程实根的数值方,它基于函数的局部线性逼近来逐步逼近方程的根。下面是利用牛顿方程组实根的Python代码示例: ```python import numpy as np def newton_method(f, J, x0, tol=1e-6, max_iter=100): """ 牛顿方程组实根 :param f: 方程组的函数向量 :param J: 方程组的雅可比矩阵 :param x0: 初始解向量 :param tol: 代收敛的容差 :param max_iter: 最大代次数 :return: 方程组的实根向量 """ x = x0 for i in range(max_iter): delta_x = np.linalg.solve(J(x), -f(x)) x += delta_x if np.linalg.norm(delta_x) < tol: return x raise ValueError("未能收敛到解") # 示例方程组:x^2 + y^2 = 25, x^2 - y = 1 def equations(x): return np.array([x**2 + x**2 - 25, x**2 - x - 1]) # 示例方程组的雅可比矩阵 def jacobian(x): return np.array([[2*x, 2*x], [2*x, -1]]) # 初始解向量 x0 = np.array([1, 1]) # 调用牛顿方程组实根 root = newton_method(equations, jacobian, x0) print("方程组的实根为:", root) ``` 这段代码中,`newton_method`函数是利用牛顿方程组实根的主要函数。其中,`f`参数是方程组的函数向量,`J`参数是方程组的雅可比矩阵,`x0`参数是初始解向量,`tol`参数是代收敛的容差,`max_iter`参数是最大代次数。函数中使用了`numpy`库来进行矩阵运算。 示例中给出了一个方程组的函数向量和雅可比矩阵的定义,你可以根据实际问题进行修改。最后,通过调用`newton_method`函数,可以得到方程组的实根向量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值