伴随矩阵
1. 余子式(Minor)
给定一个
n
×
n
n\times n
n×n 的方阵
A
=
(
a
i
j
)
n
×
n
,
A = \bigl(a_{ij}\bigr)_{n\times n},
A=(aij)n×n,
余子式(又称“子式”)定义为:
M
i
j
=
det
(
从
A
中去掉第
i
行和第
j
列后得到的
(
n
−
1
)
×
(
n
−
1
)
子矩阵
)
.
M_{ij} \;=\; \det\!\Bigl(\text{从 }A\text{ 中去掉第 }i\text{行和第 }j\text{列后得到的 }(n-1)\times (n-1)\text{ 子矩阵}\Bigr).
Mij=det(从 A 中去掉第 i行和第 j列后得到的 (n−1)×(n−1) 子矩阵).
它不带有
(
−
1
)
i
+
j
(-1)^{i+j}
(−1)i+j 这样的符号因子。
例如对于
3
×
3
3\times 3
3×3 矩阵
A
=
(
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
)
,
A = \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix},
A=
a11a21a31a12a22a32a13a23a33
,
若要计算
M
11
M_{11}
M11,就是去掉第 1 行与第 1 列,得到
(
a
22
a
23
a
32
a
33
)
,
\begin{pmatrix} a_{22} & a_{23}\\ a_{32} & a_{33} \end{pmatrix},
(a22a32a23a33),
其行列式即为
M
11
=
a
22
a
33
−
a
23
a
32
M_{11} = a_{22}a_{33} - a_{23}a_{32}
M11=a22a33−a23a32。
**注意:**这里的 M i j M_{ij} Mij 称为 余子式,是一个数值(标量),不包含任何符号 ( − 1 ) i + j (-1)^{i+j} (−1)i+j。
2. 代数余子式(Cofactor)
代数余子式(cofactor)一般记为
C
i
j
C_{ij}
Cij,定义为:
C
i
j
=
(
−
1
)
i
+
j
M
i
j
.
C_{ij} \;=\; (-1)^{\,i+j}\,M_{ij}.
Cij=(−1)i+jMij.
因此,如果先写出余子式矩阵 ( M i j ) \bigl(M_{ij}\bigr) (Mij),再对其中每个元素乘上对应的 ( − 1 ) i + j (-1)^{i+j} (−1)i+j,就能得到代数余子式矩阵 ( C i j ) \bigl(C_{ij}\bigr) (Cij)。
3. 伴随矩阵(Adjugate 或 Adjoint)
伴随矩阵
adj
(
A
)
\text{adj}(A)
adj(A) 定义为 “代数余子式矩阵的转置”,即
adj
(
A
)
=
(
C
i
j
)
T
=
(
C
11
C
21
⋯
C
n
1
C
12
C
22
⋯
C
n
2
⋮
⋮
⋱
⋮
C
1
n
C
2
n
⋯
C
n
n
)
.
\text{adj}(A) \;=\; \bigl(C_{ij}\bigr)^T \;=\; \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1}\\ C_{12} & C_{22} & \cdots & C_{n2}\\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix}.
adj(A)=(Cij)T=
C11C12⋮C1nC21C22⋮C2n⋯⋯⋱⋯Cn1Cn2⋮Cnn
.
4. 2×2 矩阵示例
令
A
=
(
a
b
c
d
)
.
A = \begin{pmatrix} a & b \\ c & d\end{pmatrix}.
A=(acbd).
-
首先,计算各个 余子式 M i j M_{ij} Mij:
- M 11 = d M_{11} = d M11=d (去掉第 1 行与第 1 列)
- M 12 = c M_{12} = c M12=c (去掉第 1 行与第 2 列)
- M 21 = b M_{21} = b M21=b (去掉第 2 行与第 1 列)
-
M
22
=
a
M_{22} = a
M22=a (去掉第 2 行与第 2 列)
因而 余子式矩阵 为
( M 11 M 12 M 21 M 22 ) = ( d c b a ) . \begin{pmatrix} M_{11} & M_{12}\\ M_{21} & M_{22} \end{pmatrix} \;=\; \begin{pmatrix} d & c\\ b & a \end{pmatrix}. (M11M21M12M22)=(dbca).
-
再乘上符号 ( − 1 ) i + j (-1)^{\,i+j} (−1)i+j,得到 代数余子式矩阵:
( + 1 ⋅ d ( − 1 ) ⋅ c ( − 1 ) ⋅ b + 1 ⋅ a ) = ( d − c − b a ) . \begin{pmatrix} +1\cdot d & (-1)\cdot c\\[6pt] (-1)\cdot b & +1\cdot a \end{pmatrix} \;=\; \begin{pmatrix} d & -c\\ -b & a \end{pmatrix}. (+1⋅d(−1)⋅b(−1)⋅c+1⋅a)=(d−b−ca). -
最后,伴随矩阵 adj ( A ) \text{adj}(A) adj(A) 是上面矩阵的转置:
adj ( A ) = ( d − b − c a ) . \text{adj}(A) \;=\; \begin{pmatrix} d & -b\\ -c & a \end{pmatrix}. adj(A)=(d−c−ba).
(对于 2×2 矩阵,很多人会直接记住“伴随矩阵就是把主对角元对调、把非对角元加负号后再换位置”——实际上就是以上三个步骤的综合效果。)
5. 用伴随矩阵求逆
若
det
(
A
)
≠
0
\det(A)\neq 0
det(A)=0,则矩阵
A
A
A 可逆,并有著名公式:
A
−
1
=
1
det
(
A
)
adj
(
A
)
.
A^{-1} = \frac{1}{\det(A)}\,\text{adj}(A).
A−1=det(A)1adj(A).
6. 小结
- 本文详细阐述了“余子式”“代数余子式”和“伴随矩阵”之间的关系。
- 计算伴随矩阵的步骤为:
- 计算余子式 M i j M_{ij} Mij。
- 乘上符号 ( − 1 ) i + j (-1)^{i+j} (−1)i+j 得到代数余子式矩阵 C i j C_{ij} Cij。
- 对代数余子式矩阵转置,得到伴随矩阵。
- 伴随矩阵在矩阵求逆中非常重要,是计算逆矩阵的关键步骤之一。